UPPER LOS ANGELES RIVER WATERSHED MANAGEMENT AREA FIRE EFFECTS STUDY INTERIM REPORT

DECEMBER 2023

SUBMITTED TO: SAN GABRIEL VALLEY COUNCIL OF GOVERNMENTS AND UPPER LOS ANGELES RIVER WATERSHED MANAGEMENT GROUP

TABLE OF CONTENTS

ACR	ONYMS	S AND ABBREVIATIONS	iv				
1.0	INTR	ODUCTION	1				
	1.1	Project Background	1				
	1.2	Problem Statement	2				
		1.2.1 Safe Clean Water Program Goals	2				
		1.2.2 Fire Effect Study Goals	3				
	1.3	Geographical Background	4				
2.0	MET	HODS	6				
	2.1	Monitoring	6				
	2.2	Modeling	7				
	2.3	Constraints	8				
	2.4	Deviations from the Work Plan	8				
3.0	MON	ITORING	9				
	3.1	Water Quality Monitoring	11				
		3.1.1 Description of Water Quality Monitoring Sites	12				
		3.1.2 Monitored Event Summary	15				
		3.1.3 Tabulated Water Quality Results	16				
		3.1.4 Data Quality Assurance/Quality Control Table	17				
	3.2	Bioassessment Monitoring	18				
		3.2.1 Bioassessment Monitoring Sites	18				
		3.2.2 Monitored Event Summary	18				
		3.2.3 Tabulated Water Quality Results	18				
4.0	MOD	ELING	20				
	4.1	Model Platform	20				
	4.2	Post-Fire Impact Scenarios	21				
	4.3	Climate Change Scenarios	22				
	4.4	Structural Control Measures Represented	23				
	4.5	Outcomes	26				
5.0	DATA	A ANALYSIS	27				
	5.1 Modeling Approach for Water Quality Data and Preliminary Results						
	5.2	Bioassessment Data Analysis	47				
6.0	STAKEHOLDER ENGAGEMENT						
	6.1	Regional Engagement and Public Outreach	55				
	6.2	Other Engagement	56				
	6.3	Regulatory Support Progress	57				
7.0	NEX.	T STEPS	59				
	7.1	.1 Quarterly and Annual Reporting					
	7.2	7.2 Monitoring					
	7.3	Modeling	59				
	7.4	Stakeholder Engagement	60				
8.0	CON	CLUSION AND RECOMMENDATIONS	62				
9.0	REF	ERENCES	63				

Appendix A. Laboratory Reports

APPENDICES

Figure 6.

Figure 7.

Figure 8.

Appendix B. Data Quality Assurance/Quality Control Appendix C. Historical Data Analysis Modeling Box Plots Appendix D. Fire Effects Study Webpage Fact Sheet LIST OF TABLES Fire Effects Study Questions4 Table 1. Water Quality Monitoring Sites and Coordinates12 Table 2. Water Quality Events Monitored During Year 115 Table 3. Dry Weather Water Quality Results Highlights......16 Table 4. Table 5. Wet Weather Water Quality Results Highlights......17 Table 6. Bioassessment Sites for the SGVCOG Fire Effects Study, 202318 Table 7. Projected Rainfall Statistics Under Selected RCP 4.5 Model Scenarios in the Table 8. Upper Los Angeles River......23 List of Built/Planned Structural Control Measures in the Upper Los Angeles Table 9. River Watershed Management Area......24 Available Historical Data......27 Table 10. Biological Condition Categories for the California Stream Condition Index48 Table 11. Summary of BMI Index Scores for the SGVCOG Fire Effects Study Table 12. Bioassessment Monitoring Sites, 2023..... Error! Bookmark not defined. Summary of BMI Biological Metrics of the SGVCOG Fire Effects Study Table 13. Summary of BMI CRAM Scores for the SGVCOG Fire Effects Study Table 14. Summary of Chemistry Analytes for the SGVCOG Fire Effects Study Table 15. Bioassessment Monitoring Sites......53 Fire Effects Study Stakeholders55 Table 16. LIST OF FIGURES Figure 1. Figure 2. Upper Los Angeles River and Rio Hondo Watershed Management Areas5 Figure 3. Bobcat Fire Map9 Recent Wildfire Burn Areas in Los Angeles County from 2017 to 202110 Figure 4. Figure 5. Photograph of Smoke from the Bobcat Fire Captured by NASA's ER-2

Aircraft 11

Fire Effects Study Water Quality Monitoring Sites13

Fire Effects Modeling Process Overview21

Water Quality Monitoring Sites During Dry Weather Events: F193B-R (upper), F194B-R (middle), and ARCAD_WA_CON (lower)......14

LIST OF FIGURES (continued)

Figure 9.	Projected Greenhouse Gas Concentrations Under Representative Concentration Pathways	23
Figure 10.	Historical Fire Burn Severity from 2017–2020 for Associated Monitored Drainage Areas	29
Figure 11.	Historical Fire Burn Severity from 2003–2010 for Associated Monitored Drainage Areas	30
Figure 12.	Imperviousness for the Associated Monitored Drainage Areas (NLCD, 2016)	31
Figure 13.	Land Uses Across the Associated Monitored Drainage Areas (SCAG, 2016)	32
Figure 14.	Box Plot of Burn Area Proportion vs. Total Suspended Solids	33
Figure 15.	Box Plot of Burn Severity vs. Total Suspended Solids	34
Figure 16.	Scatter Plot of Burn Severity vs. Orthophosphate as P	35
Figure 17.	Scatter Plot of Burn Area Proportion vs. Total Phosphorus	
Figure 18.	Scatter Plot of Burn Severity vs. Total Phosphorus	36
Figure 19.	Box Plot of Burn Area Proportion vs. Total Phosphorus	
Figure 20.	Box Plot of Burn Severity vs. Total Phosphorus	37
Figure 21.	Box Plot of Burn Area Proportion vs. Total Nitrate as N	38
Figure 22.	Box Plot of Burn Severity vs. Nitrate as N	38
Figure 23.	Box Plot of Burn Area Proportion vs. Nitrite as N	39
Figure 24.	Box Plot of Burn Area Proportion vs. Dissolved Zinc	40
Figure 25.	Box Plot of Burn Severity vs. Dissolved Zinc	40
Figure 26.	Box Plot of Burn Severity vs. Particulate Zinc	41
Figure 27.	Box Plot of Burn Area Proportion vs. Total Zinc	41
Figure 28.	Box Plot of Burn Severity vs. Dissolved Cadmium	42
Figure 29.	Box Plot of Burn Severity vs. Particulate Cadmium	43
Figure 30.	Box Plot of Burn Area Proportion vs. Total Cadmium	43
Figure 31.	Box Plot of Burn Area Proportion vs. Particulate Cadmium	44
Figure 32.	Box Plot of Burn Area Proportion vs. Dissolved Copper	
Figure 33.	Box Plot of Burn Area Proportion vs Dissolved Lead	45
Figure 34.	Box Plot of Burn Severity vs. Total Lead	45
Figure 35.	Box Plot of Burn Area Proportion vs. Total Lead	46
Figure 36.	Box Plot of Burn Area Proportion vs. Total Copper	46
Figure 37.	Box Plot of Burn Severity vs. Total Copper	47
Figure 38.	West Fork San Gabriel River Downstream Site SMC00464, Transect E Looking Upstream	
Figure 39.	West Fork San Gabriel River Upstream Site, Transect F Looking Upstream	
Figure 40.	State of the Los Angeles River Watershed Symposium Breakout Session	

ACRONYMS AND ABBREVIATIONS

0.0	
°C	degree(s) Celsius
µg/L	microgram(s) per liter
μS/cm	microSiemens(s) per centimeter
BAER	Burned Area Emergency Response
ВМІ	benthic macroinvertebrate
ВМР	best management practice
BS	blank spike
CaCO3	calcium carbonate
CAL FIRE	California Department of Forestry and Fire Protection
CIMP	Coordinated Integrated Management Program
COAST	California State University – Council on Ocean Affairs, Science, and Technology
CRAM	California Rapid Assessment Method
CSCI	California Stream Condition Index
CWH	Council for Watershed Health
CWP	Los Angeles County Water Plan
DEM	Digital Elevation Model
DO	dissolved oxygen
DQO	data quality objective
EMC	effect mean concentration
EPA	United States Environmental Protection Agency
EPT	ephemeroptera, plecoptera, and trichoptera taxa
GHG	greenhouse gas
GIS	geographic information system
HRU	Hydrologic Response Unit
HSPF	Hydrologic Simulation Program FORTRAN
IBI	Southern California Index of Biotic Integrity
ID	identifier
IPCC	Intergovernmental Panel on Climate Change
J	estimated concentration
LARWMP	Los Angeles River Watershed Monitoring Program
LCS	laboratory control sample
LCSD	laboratory control sample duplicate
LD	laboratory duplicate
LSPC	Loading Simulation Program in C++
_	<u> </u>

ACRONYMS AND ABBREVIATIONS (continued)

MDL	method detection limit					
mg/L	milligram(s) per liter					
mg/m²	milligram(s) per square meter					
mg/m³	milligram(s) per cubic meter					
MS	matrix spike					
MS4	municipal separate storm sewer system					
mS/cm	milliSiemen(s) per centimeter					
MSD	matrix spike duplicate					
MTBS	Monitoring Trends in Burn Severity					
N	nitrogen					
NASA	National Aeronautics and Space Administration					
ND	not detected					
ng/L	nanogram(s) per liter					
NHD	National Hydrology Dataset					
NLCD	National Land Cover Database					
NLDAS	North American Land Data Assimilation System					
NTU	nephelometric turbidity unit(s)					
O/E	ratio of observed taxa at a site to the expected taxa at a site					
O&M	operations and maintenance					
Р	phosphorus					
PAH	polycyclic aromatic hydrocarbon					
PFAS	per- and polyfluoroalkyl substances					
PFOA	perfluorooctanoic acid					
рММІ	predictive multi-metric index					
QA	quality assurance					
QAPP	Quality Assurance Project Plan					
QC	quality control					
RCP	Representative Concentrations Pathway					
Regional Board	California Regional Water Quality Control Board, Los Angeles Region					
RL	reporting limit					
RPD	relative percent difference					
SAFIT	Southwest Association of Freshwater Invertebrate Taxonomists					
SCAG	Southern California Association of Governments					
SCCWRP	Southern California Coastal Water Research Project					
	· · · · · · · · · · · · · · · · · · ·					

ACRONYMS AND ABBREVIATIONS (continued)

Coordinated Integrated Monitoring Program
Southern California Regional Monitoring Program
Safe, Clean Water Program
San Gabriel Valley Council of Governments
Stormwater Monitoring Coalition
State of the Los Angeles River Watershed Symposium
square foot (feet)
standard reference material
Soil Survey Geographic Database
Fire Effects Study
Surface Water Ambient Monitoring Program
Technical Advisory Committee
to be determined
total maximum daily load
Technical Stakeholder Group
Upper Los Angeles River
United States Environmental Protection Agency
United States Geological Survey
Watershed Area Steering Committee
Watershed Management Area
Watershed Management Group

1.0 INTRODUCTION

1.1 Project Background

Scientific studies have shown that wildfires produce various sources of post-fire pollutants such as gases, aerially deposited particulates, fire retardant/suppression chemicals, sediment, and ash. Increased concentrations of nutrients and metals in surface water have also been documented, which is of key importance for stakeholders in the Los Angeles region because of existing water quality impairments. Watersheds that were affected by wildfires may drain to rivers, lakes, and streams that are currently designated as impaired under Section 303(d) of the Clean Water Act for the same pollutants that are found at elevated concentrations in post-fire runoff (Southern California Coastal Water Research Project [SCCWRP], 2009).

The Upper Los Angeles River (ULAR) Watershed Management Group (WMG) consists of 19 agencies: Los Angeles County, Los Angeles County Flood Control, and the Cities of Los Angeles, Alhambra, Burbank, Calabasas, Glendale, Hidden Hills, La Cañada Flintridge, Montebello, Monterey Park, Pasadena, Rosemead, San Fernando, San Gabriel, San Marino, South El Monte, South Pasadena, and Temple City. Collectively, the ULAR WMG is responsible for upholding water quality standards by complying with multiple nutrient total maximum daily loads (TMDLs) and the Los Angeles River Metals TMDL. Considering the increase in frequency and intensity of wildfires throughout southern California and the existing evidence correlating elevated nutrients and metals concentrations in surface water with wildfires, the ULAR WMG is investigating the impacts of wildfires on water quality within its own watershed through the Fire Effects Study (Study). The goal of the Study is to implement a resilient watershed management program that addresses water quality impacts from wildfires, achieves TMDL compliance, and protects public health and beneficial uses.

This interim report details the progress made during Year 1 of the Study and highlights next steps for Year 2 of the Study. Year 1 monitoring was completed from October 2022 to September 2023., Year 2 monitoring is planned for October 2023 to September 2024. Data collected under this Study helps to address existing data gaps in water quality for burn areas, to identify the effects of post-fire runoff on contamination flux, and to determine impacts on downstream receiving waters. Additionally, these data provide information on the immediate impacts following a wildfire and the persistence of wildfire effects over time. Furthermore, data are used to develop watershed models that help predict how land use and other environmental changes resulting from wildfires could impact baseline pollutant loading to receiving waters and how climate change scenarios may further exacerbate these impacts. Post-fire data are input into best management practice (BMP) models to help inform BMP selection, siting, and even maintenance, considering various environmental conditions. The data collected and models developed from the Study characterize wildfire impacts and help stormwater managers to strategize a more resilient watershed management program that meets water quality objectives and interim and final TMDLs and support beneficial uses.

The California Regional Water Quality Control Board, Los Angeles Region (Regional Board) provides feedback on the Study methods, findings, and potential implications of data collected. Feedback from Regional Board staff will be integrated as applicable. These communications also

support coordination across other studies that the Regional Board is tracking or involved in related to fire effects on water quality conditions.

1.2 Problem Statement

Wildfires can alter stormwater quality runoff, which can have adverse effects on downstream water quality. Specifically, stormwater and sediment runoff from burned catchments after wildfires have been associated with increased concentrations of nutrients, metals, and organic pollutants. Potential sources of post-fire pollutants include fire-retardant chemicals, fire suppression chemicals, and ash deposits. These impacts pose challenges to environmental managers in the Los Angeles region, who are responsible for compliance with nutrients and metals TMDLs (Figure 1). In response, the Study was developed by the San Gabriel Valley Council of Governments (SGVCOG) on behalf of the ULAR WMG and was approved for funding under the Safe, Clean Water Program by the ULAR and Rio Hondo Watershed Area Steering Committees (WASCs). This Study will characterize wildfire impacts on stormwater quality and urban runoff and support implementation of a resilient watershed management program that achieves TMDL compliance under changing conditions.

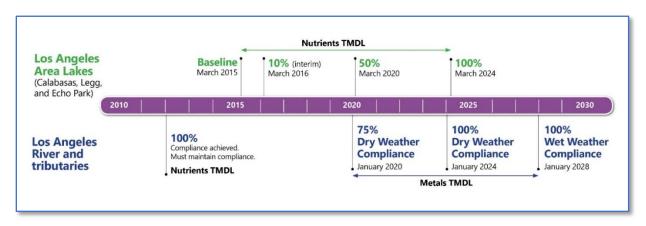


Figure 1. TMDL Compliance Timelines for Metals and Nutrients

1.2.1 Safe Clean Water Program Goals

In November 2018, voters in Los Angeles County approved Measure W, also known as the Los Angeles County Safe, Clean Water Program (SCWP), to improve water quality, increase local supply, and enhance communities. With this funding source available, stakeholders have an opportunity to initiate collaboratively on scientific studies and implement projects that will help address the ongoing water quality and quantity challenges within the Los Angeles region. Studies that are awarded funding under the SCWP, such as this Study, are approved by the WASCs and designed to fulfill the SCWP goals: improving water quality, leveraging other funding sources, encouraging innovation and new technology, and investing in scientific research.

Southern California Coastal Water Research Project. (2009). Effects of post-fire runoff on surface water quality. Retrieved on 12/7/2020 from http://ftp.sccwrp.org/pub/download/DOCUMENTS/TechnicalReports/598 SoCalRegionalFireMonitoringPlan.pdf.

Improvement of Water Quality and Contributing to Compliance With Water Quality Requirements

This Study helps to identify the impacts of post-fire runoff on downstream receiving waters and factors that influence the persistence of these impacts. Data collected are used to develop models to predict how land use and other environmental changes from fires impact baseline pollutant loading. Models also incorporate climate change scenarios because they can potentially exacerbate these water quality impacts. Additionally, data are input into BMP models to forecast appropriate structural BMP selection, siting, and maintenance. This information helps support a more resilient management program that meets TMDL objectives and supports beneficial use goals under these conditions. Data may also show that water quality requirements need to be re-evaluated to allow for these changing landscapes.

Leveraging Other Funding Sources to Maximize SCWP Goals

Because this Study is a region-wide study that includes two WASCs, involves regulatory engagement, and invites regional stakeholders to participate, it has the advantage of attracting additional interest and potential funding sources to further expand this Study.

Encouraging Innovation and Adoption of New Technology and Practices

Modelling data generated by the Study informs stakeholders about wildfire impacts on BMP performance, which can help watershed managers with BMP selection and effectiveness assessments that consider wildfire conditions and climate change scenarios.

Investing in Independent Scientific Research

This Study includes scientific research focused on the impact of fires on water quality to support regional understanding and development of better management strategies under changing future conditions.

1.2.2 Fire Effect Study Goals

The goal of the Study is to improve water quality using an approach that involves engaging regulators and leverage water quality data to generate models that will further the understanding of the impacts of wildfires on pollutant loading, BMP performance, and overall TMDL compliance. The intent of the Study is to characterize the pollutants from wildfires in the ULAR watershed and determine the fate, transport, and duration of pollutants effects. This Study assesses the long-term effects of the pollutants on water quality, using historical data from previous studies along with new data, and reassesses the effects given the changes in hydrology and weather patterns over the past decade. Next, the Study develops predictive models that can be used to anticipate future impacts of land use and other environmental changes on water quality and further exacerbation of these impacts by climate change scenarios.

This Interim Report summarizes progress to date. A Final Report, due December 2024, will quantify the effects of post-fire runoff on contaminant flux and downstream receiving waters and the factors that influence how long post-fire runoff effects persist and can impact compliance. Results of the Study will also evaluate which strategies most effectively protect water quality and beneficial uses in receiving waters impacted by post-fire runoff.

Upper Los Angeles River Watershed Management Area Fire Effects Study Interim Report December 2023

This Study leverages guidance from the Effects of Post-fire Runoff Surface Water Quality: Development of a Southern California Regional Monitoring Program with Management Questions and Implementation Recommendations (SCCWRP, 2009) for the monitoring design. However, because of site constraints (see Section 2.3) in the Study area, the program has been modified to focus on water quality monitoring and bioassessment to evaluate the impacts of wildfires. Monitoring results are used to calibrate watershed models and address the Study questions listed in Table 1.

Table 1. Fire Effects Study Questions

Fire Effects Study Management Questions	Addressed Through
How does post-fire runoff impact contaminant loading?	Water quality monitoringWatershed modeling
How do pollutant loads for metals and nutrients in burned catchments compare to loads in unburned areas?	Water quality monitoring of comparison sitesWatershed modeling
What is the likely effect of post-fire runoff on downstream receiving waters?	Watershed modeling
What are the factors that influence the duration of post-fire runoff effects?	Bioassessment monitoringWatershed modeling
How do wildfires impact BMP performance?	BMP modeling
How can the Study findings be applied to achieve regulatory compliance or regulatory relief?	 All monitoring Watershed and BMP modeling

BMP = best management practice

1.3 Geographical Background

This Study is specific the ULAR watershed management area (WMA), which covers an area of 479 square miles in the coastal plain of the Los Angeles Basin. The WMA includes the San Fernando Valley and portions of the San Gabriel Valley. This watershed is highly urbanized and is surrounded by the second largest metropolitan area in the United States. The ULAR WMA includes both the ULAR watershed and some areas of the Rio Hondo watershed (~66 square miles) as shown in Figure 2. In recent years, multiple wildfires have occurred in the area surrounding and within the ULAR WMA (Li & Banerjee, 2021). This watershed is at particular risk to wildfires because of high temperatures, the vapor pressure deficit, grass cover, and the distance to roads (Li & Banerjee, 2021).

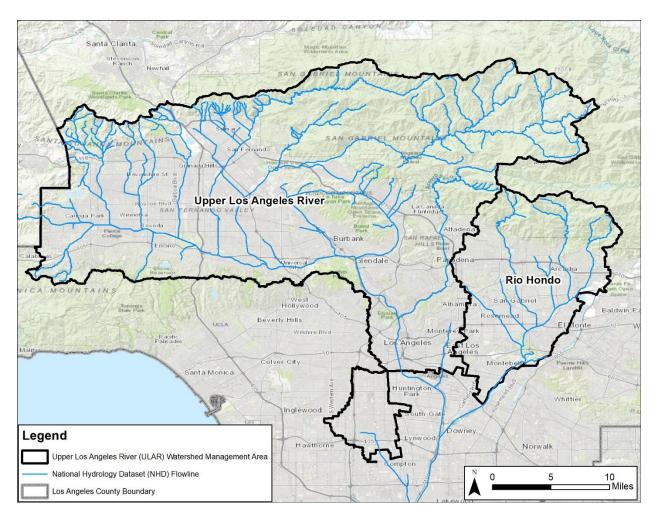


Figure 2. Upper Los Angeles River and Rio Hondo Watershed Management Areas

2.0 METHODS

The two main components of this Study are: 1) water quality monitoring in areas hydrologically connected to areas affected by wildfires and 2) the development of models to simulate potential impacts of fires in the Upper Los Angeles River watershed. Monitoring conducted under this Study is intended to fill data gaps related to post-fire runoff that may not be addressed by existing monitoring programs. The model platform being developed includes a range of post-fire impact and climate change scenarios to ultimately guide the selection of structural control measures best suited to address post-fire conditions. Monitoring methods are described in Section 2.1. Modeling methods are discussed in Section 2.2.

2.1 Monitoring

Water Quality Monitoring Methods

This section presents the dry and wet weather sample collection methods used for water quality samples collected specifically for this Study. Samples were collected in accordance with the Study Work Plan and Quality Assurance Project Plan (QAPP) (WSP USA Environment & Infrastructure, et al. 2023). Field logs and Chain of Custody (CoC) forms were generated for each sample by field teams. Samples were submitted to an analytical laboratory for analysis at the completion of each event.

Dry Weather

At each monitoring site (described in Section 3.1.1), grab water quality samples were collected during non-storm conditions. Grab samples were collected by a syringe, with a grab pole, or with a decontaminated bucket, depending on site conditions. Sampling activities were consistent with Surface Water Ambient Monitoring Program (SWAMP) protocols (SWAMP, 2016).

Wet Weather

During wet weather conditions, composite samples representative of the whole storm event were collected at each site. Standard flow-weighted compositing requires real-time data collection using flow monitoring devices that are installed onsite and operate in tandem with an auto-sampler so that total flow calculations can be sent to the sampler to trigger collection of sample aliquots. Because of the lack of channel access, flow-monitoring devices and automated samplers could not be installed for wet weather monitoring. Therefore, samples were collected and flow was estimated at consistent time intervals over the duration of the storm (e.g., one 1-liter aliquot per hour over the duration of the storm) to be post-processed proportionally to total flow volume. Level measurements were taken concurrently with and between collection each samples, as time permitted, or when significant changes in flow rates were observed.

To establish baseline conditions prior to the start of the storm, the monitoring team took an initial measurement at each monitoring site to identify the distance from the water surface or top of the channel to the bottom of the channel. During the storm, at each sample aliquot collection site, the depth of the water was measured again by subtracting the distance from the water surface to the channel bottom at each time interval. At the end of the storm, all the water depth measurements were entered into a program used to generate a hydrograph using the Manning's equation for the

Upper Los Angeles River Watershed Management Area Fire Effects Study Interim Report December 2023

appropriate type of channel and to calculate the total flow from the time of collection of each sample to the end of the storm. The total flow estimated at the time of collection of each sample volume was then divided by the total flow over the duration of the storm to identify the percentage of total flow for each sample aliquot (i.e., composite sample). The percentages were then multiplied by the total composite sample volume to identify the volume required from each sample aliquot for the composite (United States Environmental Protection Agency [USEPA], 2017).

The monitoring team used clean sampling techniques to collect water samples to ensure that collection did not contaminate, lose, or change the chemical form of the sample in a way that might affect sample analyses and results. During all sampling operations, the monitoring team was careful to minimize exposure of the sample and sample collection equipment to sources of contamination (USEPA, 1996).

Bioassessment Methods

Bioassessment sampling was performed during the appropriate index period for bioassessment sampling in southern California (March through July). Biological condition and physical habitat quality were assessed in the field following the SWAMP bioassessment field protocol (Ode et al., 2016). The California Rapid Assessment Method (CRAM) was used to assess the overall wetland condition using the Version 6.1 module for riverine wetlands (Collins et al., 2013).

Benthic biological community sample analysis followed standardized assessment tools adopted by SWAMP. Laboratory processing of the BMI samples followed the procedures in the *Standard Operating Procedures for Laboratory Processing and Identification of Benthic Macroinvertebrates in California* (Woodward et al., 2012). BMIs were identified according to the Southwest Association of Freshwater Invertebrate Taxonomists (SAFIT) Level 2a requirements (Richards and Rogers, 2011). These data were then analyzed to produce various biological metrics and two different indices of overall BMI health: (1) Southern California Index of Biotic Integrity (IBI) (Ode et al., 2005), and (2) statewide California Stream Condition Index (CSCI) (Mazor et al., 2016).

2.2 Modeling

A model platform that can simulate potential impacts of fires in the Upper Los Angeles River watershed is under development as part of the Fire Effects Study. Given the spatial and temporal limit of monitoring efforts to characterize post-fire impacts, the model platform includes a continuous simulation, watershed model and BMP performance evaluation model. The combination of these two models allows for prediction of the watersheds response to different possible fire scenarios and how that influences the performance of structural BMPs constructed or planned in the watershed.

The baseline model is based on the preSIP Adaptive Management Model, which includes an updated Loading Simulation Program in C++ (LSPC) watershed model for the Upper Los Angeles River and a python constructed network of BMP models for planned, designed, and completed BMPs in the Upper Los Angeles River. For additional details on this model development, visit the PreSIP Story Map. The Fire Effects Model will build from this baseline model to explore different fire scenarios, also layered with potential climate change scenarios. Section 4 provides additional details on the modeling approach.

Upper Los Angeles River Watershed Management Area Fire Effects Study Interim Report December 2023

To guide parameterization of fire scenarios, historical data have been analyzed to characterize potential impacts on hydrology and pollutant generation and transport dynamics in the watershed. The team coordinated with multiple agencies and programs to compile monitoring data where fires have had historical impacts in southern California. This historical database was organized to run multiple statistical analyses to observe potential watershed responses in terms of the magnitude and timing of pollutant concentrations and loads generated off land surfaces following fires and potential methods of transport via stormwater into protected waterbodies. Section 5 provides details on the data analysis.

2.3 Constraints

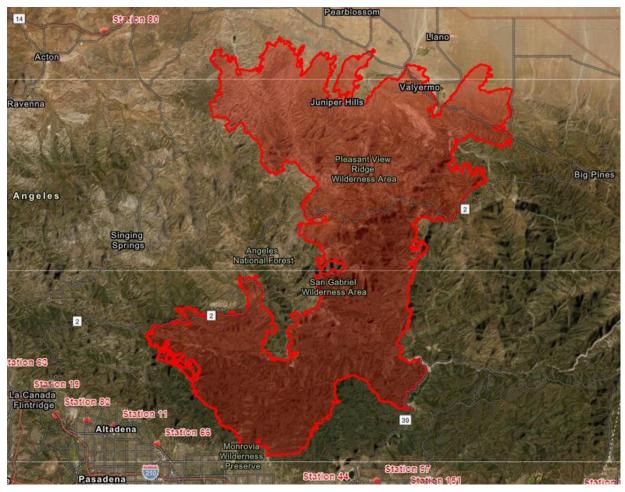
Wet weather sampling was conducted during the wet season (October 1 through April 30), depending on rainfall; dry weather post-fire sampling occurred after a wildfire event in or upstream of the ULAR WMA. For both types of sampling, monitoring could occur only at stations with existing historical data that can be compared with findings from the Study. Wet weather monitoring sites were limited by safety and access to sites during wet weather conditions. The final monitoring sites were determined after field reconnaissance and identification of access and equipment installation constraints.

The Study Work Plan and QAPP proposed standard flow-weighted composite sampling using flow-monitoring devices and automated samplers installed onsite during wet weather. Because of the lack of channel access, manual compositing, as described in the Study Work Plan and QAPP Amendment and Section 2.1 above, was conducted.

Another Study constraint was selection of historical data for modeling updates; for many previous studies, it could not be determined whether fires were ongoing or extinguished at the time of monitoring. Model parameterization for various post-fire and climate change scenarios depended on the available data to justify parameter selection.

2.4 Deviations from the Work Plan

There were no deviations from the Fire Study Work Plan and QAPP as amended by Amendment 1 (March 2023).


3.0 MONITORING

This section describes the results of monitoring conducted under this Study.

Fire Watch

The Study team referenced the California Department of Forestry and Fire Protection (CAL FIRE) website to track new wildfires within the ULAR WMA. If a wildfire occurs, the Study team evaluates the suitability of the wildfire for post-fire rapid response monitoring based on Section 10.1.1 of the QAPP. The QAPP states that the drainage area contributing to a water body with a potential monitoring site should be 80 percent burned. The Study team determines the extent of burn area by overlaying CAL FIRE Burned Area Emergency Response (BAER) maps onto ULAR WMA maps to identify streams with drainage areas that meet this requirement.

On September 6, 2020, the Bobcat Fire started in the Angeles National Forest, north of Azusa, in the San Gabriel Mountains (Figure 3). The Bobcat Fire burned more than 180 square miles, making it one of the largest fires on record in Los Angeles County (NASA Earth Observatory, 2020).

Source: County of Los Angeles Fire Department

Figure 3. Bobcat Fire Map

Figure 4 is a map of recent fires that wildfires that also burned more than 100 acres in Los Angeles County from 2017 to 2021, demonstrating the scale of the Bobcat Fire.

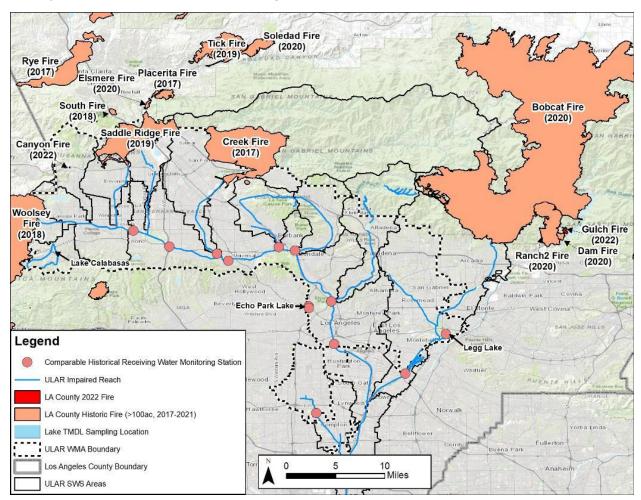


Figure 4. Recent Wildfire Burn Areas in Los Angeles County from 2017 to 2021

Figure 5 shows smoke from the 2020 Bobcat Fire in a photograph taken by National Aeronautics and Space Administration (NASA) E-2 high-altitude aircraft.

Source: Bobcat Fire Scorches Southern California (nasa.gov)

Figure 5. Photograph of Smoke from the Bobcat Fire Captured by NASA's ER-2 Aircraft

Because the Bobcat Fire met the criteria in the QAPP and qualified as one of the largest fires on record, monitoring sites for Year 1 of the Study were selected to target areas downstream of the Bobcat Fire burn area to characterize water quality impacts from this fire.

On July 2, 2023, the Chantry Fire started in Arcadia and was contained by the next day. This fire burned an area of 6 acres and was not large enough to register on the CAL FIRE website. In the summer of 2023, several fires caused by fireworks were also reported in urbanized residential and commercial areas and were not expected to impact the municipal separate storm sewer system (MS4). These fires did not meet the 80 percent burned drainage area specified in the QAPP therefore, water quality monitoring was not conducted for these instances.

3.1 Water Quality Monitoring

The "monitoring" sections of this report refer only to the data that were specifically collected for this Study. Other historical monitoring datasets were reviewed and used for modeling purposes.

3.1.1 Description of Water Quality Monitoring Sites

To address the Study management questions, wet weather and dry weather water quality was completed at three sites downstream of the Bobcat Fire burn areas that had previously been monitored under the ULAR Coordinated Integrated Management Program (CIMP):

- F193B-R is a concrete box channel in Santa Anita Wash that runs north to south under Longden Avenue. F193B-R is approximately 70 feet upstream of Longden Avenue and is on the west side of the channel.
- F194B-R is a concrete box channel in Sawpit Wash that runs north to south below Live Oak Avenue. F194B-R is approximately 200 feet downstream of Live Oak Avenue and is on the east side of the channel.
- ARCAD_WA_CON site is a concrete trapezoidal channel that is downstream of the Arcadia Wash confluence with the Rio Hondo receiving water channel. ARCAD_WA_CON is approximately 1050 feet downstream of lower Azusa Road on the west side of the Channel.

The water quality monitoring sites and coordinates for wet weather and dry weather monitoring events during Year 1 (October 1, 2022, through September 30, 2023) of the Study are presented in Table 2. During Year 2 (October 1, 2023, through September 30, 2024) the same sites will be monitored unless a new wildfire affects the ULAR WMA.

Table 2. Water Quality Monitoring Sites and Coordinates

Monitoring Site ID	Monitoring Site Name	Latitude	Longitude
F193B-R	Santa Anita Wash at Longden Avenue	34.11444	-118.01500
F194B-R	Sawpit Wash Below Live Oak Avenue	34.10722	-118.00500
ARCAD_WA_CON	Arcadia Wash Confluence	34.08968	-118.03388

ID = identifier

Figure 6 shows the locations of the three water quality sites monitored during dry weather and wet weather conditions. Monitoring sites are located at the Santa Anita Wash, Sawpit Wash, and the confluence of the Arcadia Wash with the Rio Hondo.

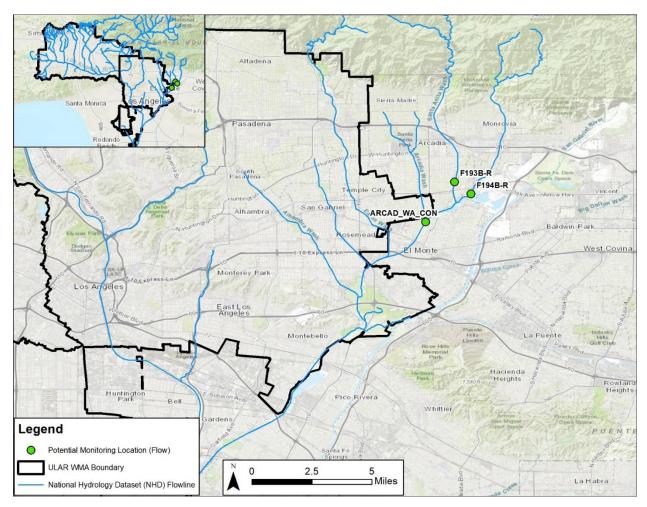


Figure 6. Fire Effects Study Water Quality Monitoring Sites

Figure 7 shows the conditions at the three water quality monitoring sites during dry weather events.

Figure 7. Water Quality Monitoring Sites During Dry Weather Events: F193B-R (upper), F194B-R (middle), and ARCAD_WA_CON (lower)

3.1.2 Monitored Event Summary

The Study team tracked weather conditions from October 1, 2022, through September 30, 2023, for the monitoring season on the National Weather Service website to determine whether and when to mobilize monitoring teams. Monitoring teams were mobilized for wet weather events based on the following criteria:

- Storm forecasts must meet qualifying criteria at least 24 hours prior to the onset of rainfall.
- A storm must be forecast to produce at least 0.25 inch of rainfall.
- The probability of precipitation must be greater than 70 percent.
- A storm event must be preceded by at least 72 hours of dry conditions (less than 0.10 inch of precipitation in a 24-hour period).

Dry weather monitoring was conducted when at least 72 hours of dry conditions or less than 0.10 inch of precipitation occurred in a 24-hour period.

Rapid response monitoring was not conducted during Year 1 of the Study. This type of monitoring consists of grab sample collection at each monitoring site during non-storm conditions. Mobilization for rapid response monitoring is scheduled immediately after a wildfire during the first runoff event with potential to mobilize pollutants from burned areas. Because no suitable wildfires occurred from October 1, 2022, through September 30, 2023, rapid response monitoring was not conducted. The Study team continues to watch for wildfires in the ULAR WMA.

Water quality grab samples were collected successfully during two dry weather events, and composite samples were collected during three wet weather events at each site as shown in Table 3.

Table 3. Water Quality Events Monitored During Year 1

Date	Event Type	Parameters Analyzed	Sample Collection Method	Samples Collected?	Study Year
12/8/2022	Dry weather	Field parameters, total and dissolved metals, nutrients, PAHs Grab sampling		Yes	Year 1
6/27/2023	Dry weather	Field parameters, total and dissolved metals, nutrients, PAHs	Grab sampling	Yes	Year 1
1/14/2023— 1/15/2023	Wet weather	Field parameters, total and dissolved metals, nutrients, PAHs	Manual flow weighted composite	Yes	Year 1
2/24/2023— 2/25/2023	Wet weather	Field parameters, total and dissolved metals, nutrients, PAHs	Manual flow weighted composite	Yes	Year 1
3/10/2023- Wet weather and dissol		Field parameters, total and dissolved metals, nutrients, PAHs	Manual flow weighted composite	Yes	Year 1

PAH = polycyclic aromatic hydrocarbon

3.1.3 Tabulated Water Quality Results

This section presents water quality results for key contaminants such as metals, nutrients, and polycyclic aromatic hydrocarbons (PAHs) in samples that were collected during both wet weather and dry weather monitoring events. To provide context, dry weather and wet weather water metals results were compared with the results from a 2012 Stormwater Contaminant Loading Following Southern California Wildfires study conducted by SCCWRP (Stein et al., 2012).

Although the dry weather monitoring events in December 2022 and June 2023 were intended to provide data on water quality conditions after a wildfire, the concentrations of copper detected during dry weather were low and typical of an unburned watershed, likely due to the length of time that elapsed from the 2020 Bobcat Fire to the dry weather monitoring events. Total copper results for the Study ranged from 7.9 to 13 micrograms per liter (μ g/L), as shown in Table 4. Post-fire total copper results in the Arroyo Seco from the 2012 SCCWRP Study were detected at concentrations from 40 to 200 μ g/L.

	-		-	_	_	
Analyta	F193B-R		F194B-R		ARCAD_WA_CON	
Analyte	12/8/2022	6/27/2023	12/8/2022	6/27/2023	12/8/2022	6/27/2023
Copper, Total (µg/L)	7.9	25	13	2.6	8.6	12
Zinc, Total (µg/L)	6.2 J	5.7 J	30	3.3 J	6.9 J	16
Phosphorus as P (mg/L)	0.13	0.068	0.33	0.046 J	0.042 J	0.11
Chlorophyll-a (mg/m³)	1	5.1	1.2	7.1	4.4	14.6
Total PAH (ng/L)	132	0.8	180	0.8	131	0.8

Table 4. Dry Weather Water Quality Results Highlights

Similarly, total zinc concentrations in samples collected for this Study ranged from 6.2 to 30 μ g/L. These concentrations of total zinc are comparable to concentrations detected in unburned watersheds for the 2012 SCCWRP Study.

Concentrations for metals detected during this Study's wet weather monitoring events were also low and were similar to concentrations detected in samples from unburned watersheds (Table 5). The Study's wet weather total copper concentrations ranged from 5.2 to 28 μ g/L; the 2012 SCCWRP Study reported post-fire concentrations from 40 to 200 μ g/L. Zinc concentrations in samples collected during wet weather conductions during the Study ranged from 29 to 84 μ g/L and were similar to total zinc concentrations in samples collected from unburned natural areas during the 2012 SCCWRP Study. Post-fire effect mean concentrations (EMCs) for total zinc in the 2012 SCCWRP Study were detected up to 300 μ g/L, which far exceed the zinc detections in this Study.

Laboratory reports with analytical results for the two dry weather and three wet weather monitoring events are included in Appendix A.

^{*}Range of individual PAH compounds reported for discussion. Total PAHs will likely be used for future modeling efforts. µg/L = microgram(s) per liter; J = estimated concentration, mg/L = milligram(s) per liter; mg/m³ = milligram(s) per cubic meter; ND = not detected; ng/L = nanogram(s) per liter; P = phosphorus; PAH = polycyclic aromatic hydrocarbon; Total PAH is a sum of the 16 EPA Priority PAHs

Table 5. Wet Weather Water Quality Results Highlights

Analyta		F193B-R		F194B-R			ARCAD_WA_CON		
Analyte	1/15/2023	2/25/2023	3/11/2023	1/15/2023	2/25/2023	3/11/2023	1/15/2023	2/25/2023	3/11/2023
Copper, Total (µg/L)	20	28	12	13	21	14	8.8	5.4	5.2
Nitrogen, Total (mg/L)	2.3	2.4	2.3	1.5	1.8	2.3	1.4	1.1	1.9
Phosphorus as P (mg/L)	0.22	0.33	0.18	0.20	0.31	0.25	0.24	0.085	0.092
Zinc, Total (µg/L)	74	56	50	75	72	84	39	30	29
Chlorophyll-a (mg/m³)	ND	ND	3	ND	ND	ND	ND	ND	ND
Total PAH * (ng/L)	114	116	114	120	129	130	120	29	114

^{*}Only naphthalene was detected in PAH results. All other results were ND. NDs were included in the calculation of Total as the MDL. μg/L = microgram(s) per liter; J = estimated concentration, mg/L = milligram(s) per liter; mg/m³ = milligram(s) per cubic meter; ND = not detected; ng/L = nanogram(s) per liter; P = phosphorus; PAH = polycyclic aromatic hydrocarbon, Total PAH is a sum of the 16 EPA Priority PAHs

3.1.4 Data Quality Assurance/Quality Control Table

Data quality assessment tables for dry and wet weather water quality results are provided in Appendix B. Table B-3 in Appendix B details the dry weather QA/quality control (QC) review for the Study's dry weather results, which are summarized below:

- 18 percent of the field duplicate results exceeded the target relative percent difference (RPD) of 25 percent. Because microbiological constituents have an exponential growth curve, their results are log-transformed prior to calculating the RPD value.
- 3 percent of the field blank results were detected above the reporting limit (RL).
- 17 percent of field sample results were qualified with a J flag, indicating an estimated concentration between the method detection limit (MDL) and RL.

Table B-4 in Appendix B details the QA/QC review for the Study's wet weather results, which are summarized below:

- 0 percent of the field duplicate results exceeded the target RPD of 25 percent. Because microbiological constituents have an exponential growth curve, their results are logtransformed prior to calculating the RPD value.
- 0 percent of the field blank results were detected above the RL.
- 15 percent of field sample results were qualified with a J flag, indicating an estimated concentration between the MDL and RL.

3.2 Bioassessment Monitoring

Bioassessment monitoring is conducted to evaluate physical habitat, aquatic life communities, water chemistry, flow regimes, and tree canopy to assess the conditions of a stream. Bioassessment data may be used to assess changes in water quality other than water chemistry.

Bioassessment monitoring was be performed in streams deemed suitable for sampling (e.g., wadeable, with sufficient water flow to establish robust benthic macroinvertebrate [BMI] communities). Streams should flow throughout the wet season so that sampling may occur during the appropriate index period for southern California defined in Ode et al. 2016 (April 15 through July 15).

3.2.1 Bioassessment Monitoring Sites

Two monitoring reaches in the San Gabriel River watershed were assessed under this Study in June 2023. Both of these sites have been sampled historically under the Southern California Regional Monitoring Program (SCRMP) and have pre-fire data available for comparison. Monitoring stations were:

- Site SMC00464 downstream of the Bobcat Fire burn area and below the confluence of the north and west forks of the San Gabriel River
- Site 405BH2A within the Bobcat Fire burn area in the west fork of the San Gabriel River and upstream of the confluence with the north fork of the San Gabriel River

3.2.2 Monitored Event Summary

Table 6 describes the two sites monitored downstream of burned areas. Monitoring was completed on June 29, 2023 during dry weather conditions at sites SMC00464 and 405BH2B.

Table 6. Bioassessment Sites for the SGVCOG Fire Effects Study, 2023

WMA	Stream and Location	Station Code	Date Sampled	Latitude/ Longitude
San Gabriol Pivor	West Fork San Gabriel River Downstream of Confluence with North Fork	SMC00464	6/29/2023	34.2418, -117.8656
San Gabriel River	West Fork San Gabriel River Upstream of Confluence with North Fork	405BH2A	6/29/2023	34.2429, -117.8720

SGVCOG = San Gabriel Valley Council of Governments; WMA= Watershed Management Area

3.2.3 Stream Bioassessment Results

Laboratory reports with bioassessment results are provided in Appendix A. Table 7 summarizes IBI and CSCI index scores for BMI community health of the sites monitored in Summer 2023.

Upper Los Angeles River Watershed Management Area Fire Effects Study Interim Report December 2023

Table 7. Summary of BMI Index Scores for the SGVCOG Fire Effects Study Bioassessment Monitoring Sites, 2023

Stream Name	Site Code	IBI	IBI Rating	CSCI	CSCI Condition Category
San Gabriel River Downstream Site	SMC00464	33	Poor	1.00	Likely Intact
San Gabriel River Upstream Site	405BH2A	34	Poor	0.97	Likely Intact

BMI = benthic macroinvertebrate; CSCI = California Stream Condition Index; IBI = Southern California Index of Biotic Integrity; SGVCOG = San Gabriel Valley Council of Governments; WMA = watershed management area

4.0 MODELING

The following subsections summarize the Fire Effects model platform being developed, the range of post-fire impact and climate change scenarios to be simulated, selection of structural control measures to characterize potential impacts to performance based on the above scenarios, and summarize expected outcomes from the fire effects modeling efforts.

4.1 Model Platform

As described in Section 2.2, the model platform is based on the PreSIP Adaptive Management Model, which includes an updated Loading Simulation Program in C++ (LSPC) watershed model for the Upper Los Angeles River and a python-constructed network of BMP models for planned, designed, and completed BMPs in the Upper Los Angeles River.

The LSPC watershed modeling system includes Hydrologic Simulation Program FORTRAN (HSPF) algorithms and additionally integrates a geographical information system (GIS), comprehensive data storage and management capabilities, and a data analysis/post-processing system into a convenient Windows interface. The algorithms of LSPC are identical to a subset of those in the HSPF model, with some additions. LSPC is freely distributed by the United States Environmental Protection Agency (EPA) Office of Research and Development in Athens, Georgia, and is a component of EPA's National TMDL Toolbox. The primary inputs to set up the LSPC model are (1) meteorological data, representing precipitation and evapotranspiration timeseries as a boundary condition to execute the hydrology and water quality modules; (2) subwatersheds, which form the foundation of the model architecture and delineate the landscape into hydrologic units that link the landscape to the downstream receiving water; (3) Hydrologic Response Units (HRUs), representing areas of similar physical characteristics based on land use and land cover conditions; and (4) reach characteristics, which drive the relationship between flow and water depth and affect travel times across the subwatersheds. The PreSIP Adaptive Management Model has recently been updated and specifically calibrated in the Upper Los Angeles River based on the local monitoring data.

Water quality represented in the model will focus on sediments, nutrients, and metals. Baseline model parameterization will be updated for the Fire Effects Model to represent multiple scenarios of a post-fire landscape. In addition to the baseline conditions (i.e., pre-fire), the model will be parameterized to represent impacts of three fire-related variables of (1) total burned area, (2) burn severity, and (3) burn proximity to assessment points. The parameterization will be based on minimal and worst-case scenarios of the three variables and will include all available combinations, resulting in eight total post-fire impact scenarios modeled. Watershed modeling will be used to characterize the changes to baseline pollutant loading in the post-fire environment scenarios.

In addition, the Fire Effect Model will layer the post-fire impact scenarios with projected climate change scenarios. The inclusion of climate changes scenarios is intended to explore potential for further exacerbation of pollutant loadings and impact on receiving water quality conditions. Four different predictive models from the Representative Concentrations Pathways (RCPs) model scenarios 4.5 and 8.5 will be used to update weather data inputs (precipitation and evapotranspiration) for the baseline and post-fire impact scenario watershed models. The eight

climate change scenarios layered with the eight post-fire impact scenarios will result in a total of 64 model scenarios to compare with current baseline conditions.

Finally, to inform more resilient management strategies under the represented post-fire and climate change scenarios, these various watershed model scenarios will be used as updated inputs to existing BMP models for constructed or planned BMPs in the Upper Los Angeles River watershed. The BMP models estimate the range of nutrient and metal loads reduced under the various post-fire and climate change impacts. Figure 8 provides an overview of this connected modeling process.

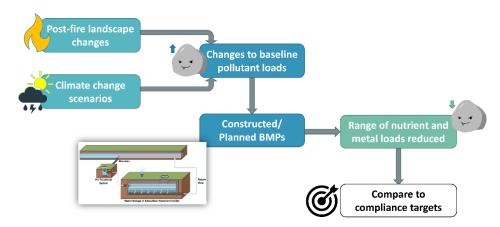


Figure 8. Fire Effects Modeling Process Overview

4.2 Post-Fire Impact Scenarios

Previous studies have shown that after fires, flows exiting burned catchments are increased because of a loss of vegetation, affecting transpiration processes. Accompanying these increased flows usually comes elevated suspended sediment, nutrient loads, and heavy metals. These increases in pollutants have been documented by many studies and have varied behavior in the timing of their post-fire peak loading and eventual return to pre-fire conditions. Total burn area, burn severity, and the fire's proximity to assessment points have been identified as significant factors influencing the magnitude, spatiotemporal distribution, and composition of downstream water quality pollutants. Each of these variables will have a minimal case and worst-case representation assigned, as summarized in Table 8.

These same factors are being explored in the historic monitoring data for the quantitative effect of each of these factors on pollutants of interest in the Study area. The results of the historic data analysis are being utilized to inform adjustments to parameters in the baseline LSPC watershed model. Hydrologic Response Units (HRUs), related to the land use and land cover, within the model projecting potential affects from fires will have their parameters altered based on the variables summarized in Table 8. The burn severity factor will have the greatest influence on the magnitude of adjustments to defined hydrologic and water quality parameters of affected HRUs. The total burn area and fire's proximity to assessment points will primarily be represented in the model based on specifying to which subwatersheds the adjusted HRU parameter sets are applied.

Table 8. Adjustable Variables in Post-Fire Impact Model Scenarios

Variables	Minimal Case Scenario	Worst-Case Scenario
Burned Area	Average (based on historical fires in Region)	Entire Upland Forest
Severity	Low	High
Proximity to Assessment Points	Far	Near

4.3 Climate Change Scenarios

RCPs are modeled climate change scenarios produced by the Intergovernmental Panel on Climate Change (IPCC) representing various outcomes related to greenhouse gas emissions. These scenarios range from RCP 1.9, representing aggressive limiting of greenhouse gas (GHG) emissions resulting in global temperatures increase of 1.5 degrees Celsius in accordance with the Paris Agreement, to RCP 8.5, which is a worst-case scenario where emissions continue to increase throughout the 21st century. For this Study, downscaled climate data from various modeled scenarios under RCP 4.5 and 8.5 will be used to update precipitation and evapotranspiration inputs to the LSPC watershed model. The difference in projected GHG emissions under RCPs 4.5 and 8.5 are shown in Figure 9.

The selected model scenarios are CadESM2, CNRM-CM5, HadGEM2-ES, and MICROC5. Each model provides slightly different values of precipitation and evapotranspiration projections due to differences in model assumptions. A summary of rainfall statistics applicable in the Upper Los Angeles River watershed under these scenarios for RCP 4.5 are listed in Table 9. Each of the post-fire impact scenario models will be run with this ensemble of CMIP5 models to quantify a range of responses under future climatic conditions. This approach provides a measure of confidence and uncertainty embedded in future projections of climatic data.

IPCC AR5 Greenhouse Gas Concentration Pathways

Representative Concentration Pathways (RCPs) from the fifth Assessment Report by the International Panel on Climate Change

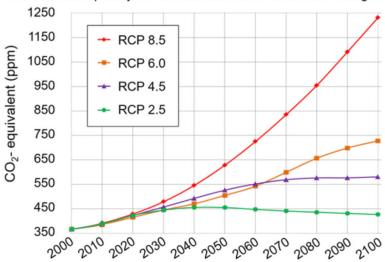


Figure 9. Projected Greenhouse Gas Concentrations Under Representative Concentration Pathways

Table 9. Projected Rainfall Statistics Under Selected RCP 4.5 Model Scenarios in the Upper Los Angeles River

RCP 4.5 –	2030–2060			
Model Scenarios	Average Rainfall per Storm Event (inches)	Maximum Storm Event Rainfall (inches)	Average Number of Storm Events per Year	
CadESM2	0.88	13.67	13.9	
CNRM-CM5	1.21	17.62	15.2	
HadGEM2-ES	0.85	9.91	14.3	
MIROC5	0.77	19.63	14.7	

RCP = Representative Concentrations Pathway

4.4 Structural Control Measures Represented

In the Upper Los Angeles River watershed management area, 81 structural control measures have been identified as built or are in the design phase with secured funding. These 81 projects are summarized in Table 10, and a subset of these projects will be selected to incorporate in the Fire Effects Model. Selected projects will ensure a range of project types and variety of locations across assessment areas. Feedback from the Technical Advisory Committee will be sought to confirm selected structural control measures to represent from this list.

The updated LSPC model outputs from the post-fire and climate change scenarios will be used to revise inputs to the existing python-based BMP models for the selected projects to evaluate changes in average annual pollutant load reductions across the scenarios as compared with baseline conditions. Selected planned structural control measures will be modeled based on

individual performance, excluding potential impacts of nested projects, because the intent is to characterize a range of general impacts to project performance under post-fire and climate change scenarios.

Table 10. List of Built/Planned Structural Control Measures in the Upper Los Angeles River Watershed Management Area

Built/Planned Structural Control Measure Name	Watershed Assessment Area	
Arroyo Seco Golf Course Driving Range Wetlands	Arroyo Seco	
Arroyo Seco Stormwater Capture Basin	Arroyo Seco	
Arroyo Seco Golf Course Constructed Wetlands	Arroyo Seco	
Arroyo Seco-San Pascual Treatment Wetlands	Arroyo Seco	
Altadena/Lake Avenue Green Improvement	Arroyo Seco	
Garvanza Park BMP	Arroyo Seco	
Arroyo Seco-San Rafael Treatment Wetlands	Arroyo Seco	
Altadena Mariposa Green Street	Arroyo Seco	
Glenoaks Greenway	Burbank Western Channel	
Glenoaks Bioswales and Dry Wells	Burbank Western Channel	
South Los Angeles Wetlands Park	Compton Creek	
Westmont/Vermont Avenue Green Improvement	Compton Creek	
Broadway Neighborhood Stormwater Greenway	Compton Creek	
Broadway-ManchesterGreen Streets Project	Compton Creek	
Franklin D. Roosevelt Park Regional Project	Compton Creek	
Magic Johnson Park BMP	Compton Creek	
Avalon Green Alley South	Compton Creek	
Lincoln Park Neighborhood Green Street Network	LA River Reach 2	
Walnut Park Project	LA River Reach 2	
East L.A. Sustainable Median Stormwater Capture	LA River Reach 2	
City Hall North Lawn	LA River Reach 2	
South Pasadena Huntington Drive Green Street	LA River Reach 2	
Albion Riverside Park	LA River Reach 2	
Main Street Green Street Demo Project	LA River Reach 2	
Taylor Yard River Park - Parcel G2	LA River Reach 3	
Taylor Yard River Park Parcel	LA River Reach 3	
Oros Green Street	LA River Reach 3	
Valley Plaza Park Stormwater Capture Project	LA River Reach 4	
North Hollywood Alley Retrofit BMP	LA River Reach 4	
Strathern Park North Stormwater Capture Project	LA River Reach 4	
Metro Orange Line Infiltration Project	LA River Reach 4	
Metro Orange Line Infiltration Project	LA River Reach 4	
Elmer Avenue & Elmer Paseo Retrofit	LA River Reach 4	
Magnolia /Vineland to Cahuenga	LA River Reach 4	
Metro Orange Line Infiltration Project	LA River Reach 4	
Metro Orange Line Infiltration Project	LA River Reach 4	
Burbank Blvd. BMP	LA River Reach 4	
Metro Orange Line Infiltration Project	LA River Reach 4	
, ,		

Table 10. List of Built/Planned Structural Control Measures in the Upper Los Angeles River Watershed Management Area (continued)

Built/Planned Structural Control Measure Name	Watershed Assessment Area	
Victory ES – DROPS	LA River Reach 4	
Valley Village Park Stormwater Capture Project	LA River Reach 4	
Sun Valley Park	LA River Reach 4	
Fernangeles Park Stormwater Capture Project	LA River Reach 4	
Metro Orange Line Infiltration Project	LA River Reach 4	
Agnes/Vanowen	LA River Reach 4	
Whitsett Fields Stormwater Capture Project	LA River Reach 4	
Lankershim Boulevard Capture Network Project	LA River Reach 4	
Rory M. Shaw Wetlands Park Project	LA River Reach 4	
Lankershim Great Street	LA River Reach 4	
Whitnall Highway Powerline Easement BMP	LA River Reach 4	
Cabellero Creek Confluence Park	LA River Reach 6	
Pierce College NE Campus Stormwater Capture	LA River Reach 6	
East LA Sustainable Median Stormwater Capture	Rio Hondo Downstream from Whittier Narrows	
ELAC Northeast Drainage Area Biofiltration Project	Rio Hondo Downstream from Whittier Narrows	
Alhambra Wash Dry-Weather Diversion	Rio Hondo Upstream from Whittier Narrows	
Rubio Wash Dry-Weather Diversion	Rio Hondo Upstream from Whittier Narrows	
Arcadia Wash Water Conservation Diversion	Rio Hondo Upstream from Whittier Narrows	
Eaton Wash Dry-Weather Diversion	Rio Hondo Upstream from Whittier Narrows	
Sierra Madre Boulevard Green Street		
Rio Hondo Ecosystem Restoration Project	Rio Hondo Upstream from Whittier Narrows	
Washington Park Stormwater Capture Project	Rio Hondo Upstream from Whittier Narrows	
Mt. Lowe Median Stormwater Capture Project	Rio Hondo Upstream from Whittier Narrows	
Merced Avenue Greenway	Rio Hondo Upstream from Whittier Narrows	
Sierra Madre Boulevard Green Street	Rio Hondo Upstream from Whittier Narrows	
Plymouth School Neighborhood Stormwater Capture	Rio Hondo Upstream from Whittier Narrows	
South El Monte High School	Rio Hondo Upstream from Whittier Narrows	
San Fernando Gardens	Tujunga Wash	
Whiteman Airport BMP	Tujunga Wash	
David M. Gonzales Recreation Center Project	Tujunga Wash	
San Fernando High School	Tujunga Wash	
San Fernando Middle School	Tujunga Wash	
Glenoaks-Filmore SWCP	Tujunga Wash	
Laurel Canyon Boulevard Green Street	Tujunga Wash	
San Fernando Regional Park Infiltration Project	Tujunga Wash	
Victory-Goodland Median	Tujunga Wash	
Haddon Ave Elementary School	Tujunga Wash	
Oro Vista Local Area Urban Flow Management Project	Tujunga Wash	
Bradley Green Alley	Tujunga Wash	

Table 10. List of Built/Planned Structural Control Measures in the Upper Los Angeles River Watershed Management Area (continued)

Built/Planned Structural Control Measure Name	Watershed Assessment Area	
Van Nuys Boulevard Median Infiltration	Tujunga Wash	
Canterbury Powerline Easement Stormwater Capture	Tujunga Wash	
Woodman Avenue Multi-Beneficial Stormwater Capture	Tujunga Wash	
Distributed Drywell System Project	Verdugo Wash	

4.5 Outcomes

The post-fire and climate change model scenarios will provide a range of potential changes to baseline hydrology and pollutant loading in the Upper Los Angeles River watershed based on potential fires. This is intended to provide minimal to worst case characterization if future fires occur in the watershed and implications on pollutant conditions. The representation of structural control measures under the range of potential scenarios will be used to help recommend more resilient BMP designs for cost-effective approaches considering potential fire cases and projected climate change. Considerations for operations and maintenance (O&M) improvements may also be incorporated in these BMP recommendations. The range in watershed baseline pollutant loading and corresponding BMP pollutant load reductions will also be evaluated relative to compliance requirements for nutrient and metals TMDLs in the Upper Los Angeles River watershed. This is intended to further support the regulatory engagement on meaningful, realistic post-fire numeric goals related to MS4 Permittee responsibility.

5.0 DATA ANALYSIS

5.1 Modeling Approach for Water Quality Data and Preliminary Results

Historical Data Analysis for Modeling Approach

Monitoring data with records of fire impacts were compiled and analyzed from other sources to better inform updates for the Fire Effects Model Platform described in Section 4. For the initial historical data analysis, Table 11 summarizes the available data sources compiled. As the Study progresses, ongoing efforts have been made to request additional data sources from studies exploring similar impacts of fires on natural water quality. The available data have been reviewed and processed for usability to inform model parameterization and calibration or alternatively provide supplemental supporting proof of fire impacts on receiving water quality.

Table 11. Available Historical Data

Stakeholder	Available Data	Data Timeline
ULAR WMG	CIMP station data	Historical data through 2021
OLAR WING	LARWMP water quality and bioassessment data	2008-present
Ventura County	Water quality and bioassessment data, including burned areas	2015–2021
Orange County	Santiago Fire burn areas	2007–2008 wet season
SCCWRP	SCCWRP Natural resources data Arroyo Seco (Station Fire) Contaminant Loading following wildfires Aerial deposition (Santa Monica Bay)	2001–2010
San Gabriel River Regional Monitoring Program	Monitoring at burn sites (Babcock Fire)	2020–2021
Riverside County	Holy Fire post-fire monitoring report	2018
Various Under the SMC Program	SMC Data	2011–2021

LARWMP = Los Angeles River Watershed Monitoring Program; SCCWRP = Southern California Coastal Water Research Project; CIMP = Coordinated Integrated Monitoring Program, SMC = Stormwater Monitoring Coalition; TBD = to be determined; ULAR = Upper Los Angeles River, WMG = Watershed Management Group

Data collected from stakeholders represent 38,165 unique observations of 400 constituents, including total, particulate, and dissolved heavy metals and nutrients, general water chemistry, flow, suspended sediment, biological assays, and more. The sources, constituents, and sampling timeframes from each data source are listed in Table 11. Of those samples, 19 percent were taken during dry weather, and 81 percent were taken during wet weather. Recent studies have indicated that many of the observed fire impacts are recovered within 2 years after the fire incident. Of the compiled observations, 70 percent were either prior to or within 2 years following at least one of 10 fires that have impacted the drainage areas of the monitoring locations. A total of 132 monitoring locations are represented whose drainage areas total over 2 million acres and have been impacted by fires within their drainage areas ranging from less than 1 to 100 percent. The fires represented within the historical dataset ranged in severity from being entirely classed as low severity to predominantly severe burns.

Upper Los Angeles River Watershed Management Area Fire Effects Study Interim Report December 2023

To align with the variables of interest in the Fire Effects Model Platform, the historical data were analyzed under the context of relevant burn severity and burned area within the monitored drainage areas. Given the HRU-based model parameterization, it was also important to characterize the land uses and cover within the historical monitored drainage areas and burned areas. This required significant geospatial processing, which included for the following layers (shown in Figures 10 through 13):

- Monitoring locations' drainage areas were determined using publicly available storm drain data and USGS Digital Elevation Model (DEM).
- Fire soil burn severity data were collected from the Monitoring Trends in Burn Severity (MTBS) gridded dataset.
- Land use data come from the Southern California Association of Governments (SCAG) 2016 dataset, and imperviousness data were downloaded from the National Land Cover Database (NLCD) 2016 dataset.
- Hydrologic Soil Groups data were downloaded from the Soil Survey Geographic Database (SSURGO).

Spatial analyses of these data included monitoring location drainage area delineation and flow accumulation, intersection of monitoring location drainage areas with soil burn severity, land use, and hydrologic soil group, computation of proportion of burned areas and subsets of soil burn severity classes, and computation of flow distance from burn perimeter to monitoring location, among others.

Rainfall data for the area of interest were also downloaded from the North American Land Data Assimilation System (NLDAS) to characterize the amount of rainfall received in the period prior to sampling and wet/dry weather categorization for each sampling location if it was not clearly noted in the data.

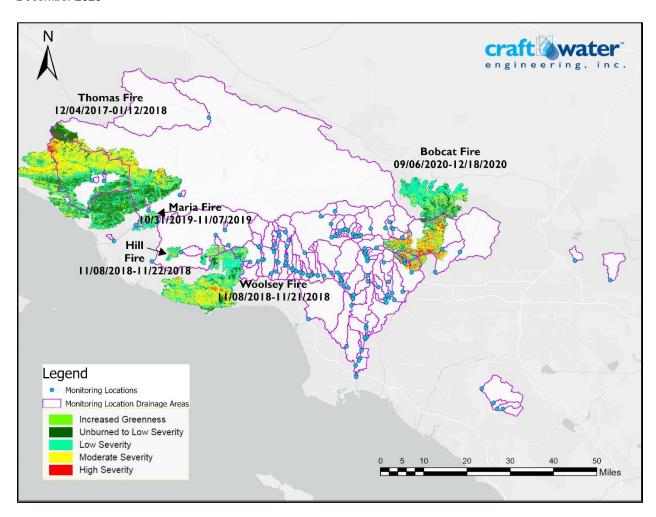


Figure 10. Historical Fire Burn Severity from 2017–2020 for Associated Monitored Drainage Areas

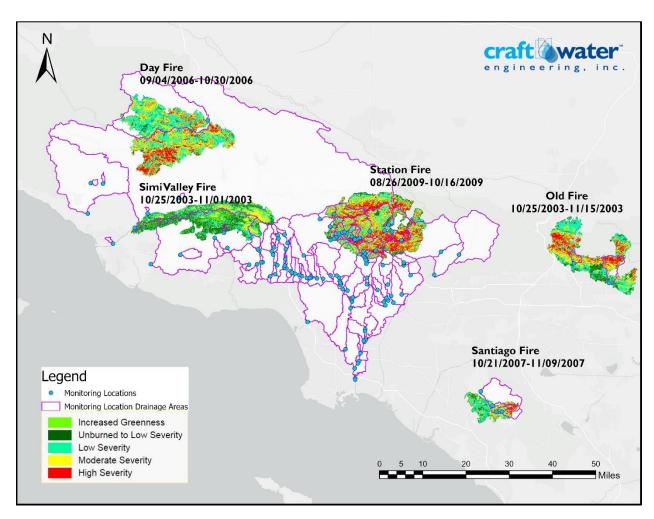


Figure 11. Historical Fire Burn Severity from 2003–2010 for Associated Monitored Drainage Areas

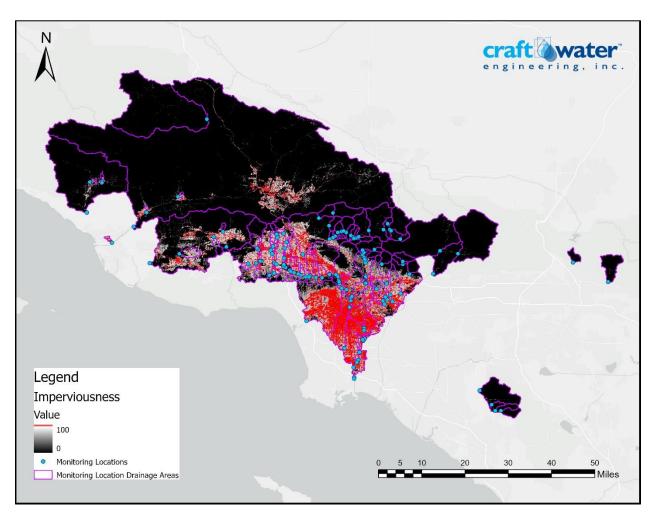


Figure 12. Imperviousness for the Associated Monitored Drainage Areas (NLCD, 2016)

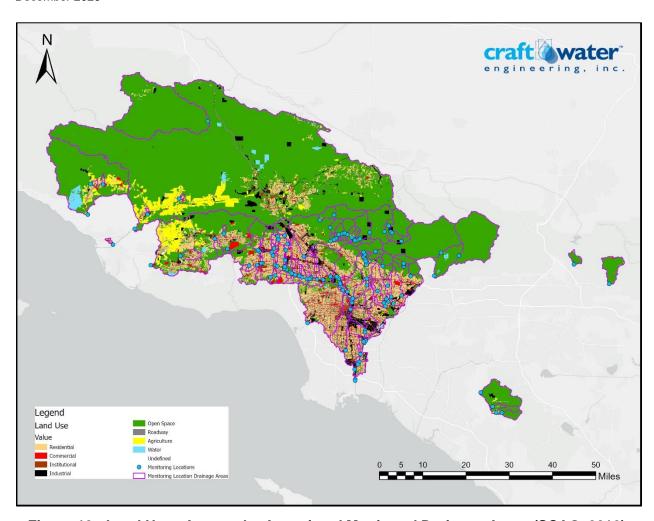


Figure 13. Land Uses Across the Associated Monitored Drainage Areas (SCAG, 2016)

To support the post-fire impact modeling scenarios, analyses were performed using outputs from the spatial analyses to explore the quantitative relationship between water quality constituents of interest for dry and wet weather samples relative to the burn extent, severity, and proximity. These metrics were computed both quantitatively and then assigned a categorical class. Burn area proportion is simply the percentage of the area upstream of a monitoring location that burned, expressed as a decimal. Burn area ratios of less than 0.5 were assigned the class "low," and from 0.5 to 1, "high." For burn severity, the total area of each severity class was computed across each monitoring location's drainage area. The areas representing classes from MTBS "unburned/low severity" and "low severity" were summed, and the "moderate" and "high" severity classes were summed. The ratio of these summations is then the burn severity ratio, with values over 1 being classed as "high severity" and ratios below 1 assigned "low severity."

Key highlighted observations from these analyses are summarized below, and additional statistical figures are provided in Appendix C. Although many constituents were analyzed in the available historical data, the focus of the information presented in this report, consistent with the Study objectives, is on sediment, heavy metals, and nutrients. The following information is being further processed to inform and compare model parameterization most representative of the minimal to worst-case scenarios for the burn area, burned severity, and burn proximity variables.

Combined with the literature review, this analysis is helping to bracket the magnitude and spatiotemporal distribution of the adjusted HRU-based parameterization representative of the post-fire impact model scenarios.

Total Suspended Solids

For total suspended solids, storm events with greater precipitation totals brought an increase in sediment, as expected. However, the overall range of suspended solids from before fire incidents to samples taken after fires only demonstrated a slight increase. Although an increase in the burned area resulted in an increase in suspended solids, higher soil burn severity did not always lead to more suspended sediment. For sites with higher soil burn severity, the higher range of suspended solids concentrations did increase, with a higher median concentration and more samples with concentrations above 1,000 mg/L during wet weather. All categories showed a slight increase post-fire. Figures 14 and 15 show the results for total suspended solids in terms of burn area proportion and burn severity.

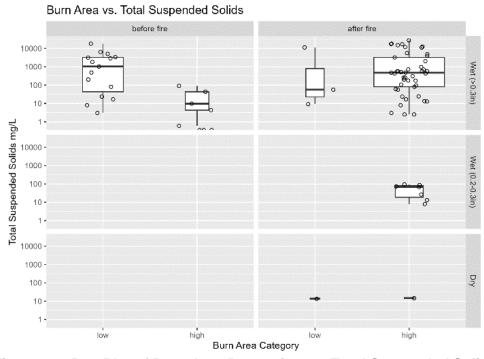


Figure 14. Box Plot of Burn Area Proportion vs. Total Suspended Solids

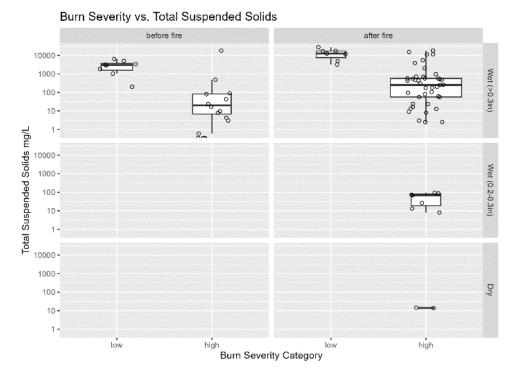


Figure 15. Box Plot of Burn Severity vs. Total Suspended Solids

Phosphorus

Before any fire impacts, orthophosphate sampled only during storm events with higher precipitation totals. In the post-fire samples, orthophosphate concentrations showed an increasing trend with higher burn severity. Not enough data are available to make any observations about dry weather conditions. Total phosphorus concentrations demonstrated a similar pattern as orthophosphate concentrations, except even more pronounced. It appears that total phosphorus concentrations increase with burn severity and burn area, and overall were higher in the post-fire samples, but the data may be biased because of the sample size of those various groups. The greatest range of concentrations were in wet weather samples post-fire. Note that some total phosphorus concentrations in samples were very high (above 100 mg/L as provided) and significantly affect the analysis. Figures 16 through 20 show the results for phosphorus in terms of burn area proportion and burn severity.

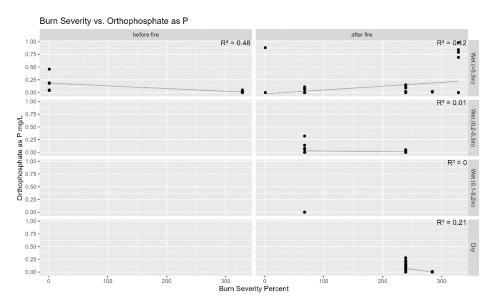


Figure 16. Scatter Plot of Burn Severity vs. Orthophosphate as P

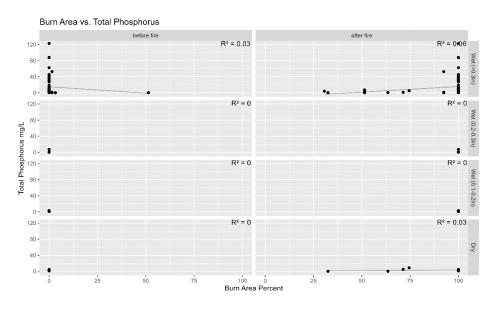


Figure 17. Scatter Plot of Burn Area Proportion vs. Total Phosphorus

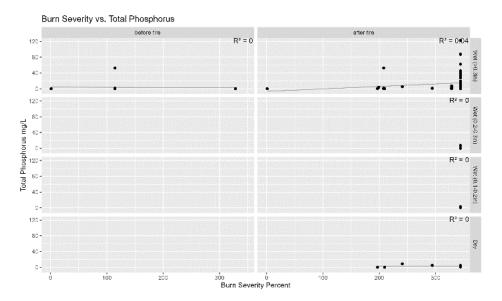


Figure 18. Scatter Plot of Burn Severity vs. Total Phosphorus

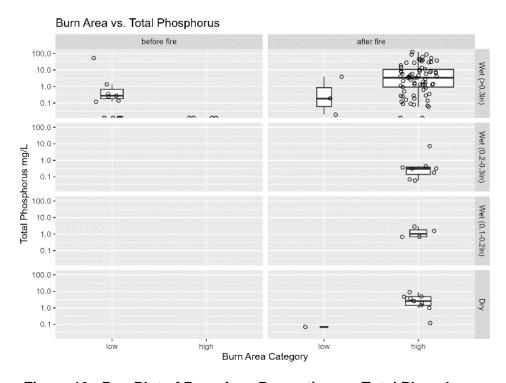


Figure 19. Box Plot of Burn Area Proportion vs. Total Phosphorus

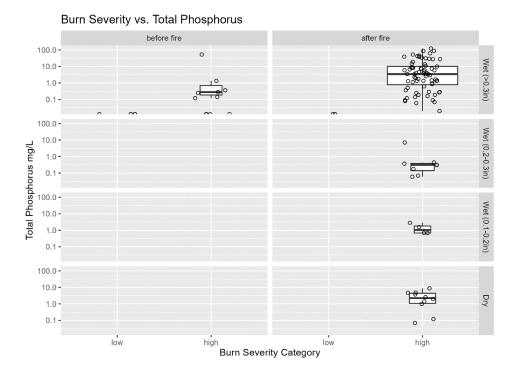


Figure 20. Box Plot of Burn Severity vs. Total Phosphorus

Nitrogen

Nitrogen compounds had significantly more data available where samples were taken post-fire as compared with before any fire impacts. Post-fire, in areas of high burn severity, there were more instances of concentrations exceeding 10 mg/L, which is notably above typical regulatory thresholds for nitrogen compounds. Nitrite concentrations were more variable post-fire, but were overall much lower than nitrate concentrations, which is expected. Limited data are available for nitrate + nitrite N. There appears to be a trend of higher nitrogen concentrations post-fire, but lack of sufficient pre-fire data limit this observation and comparison with former conditions. Figures 21 through 23 show the results for nitrogen in terms of burn area proportion and burn severity.

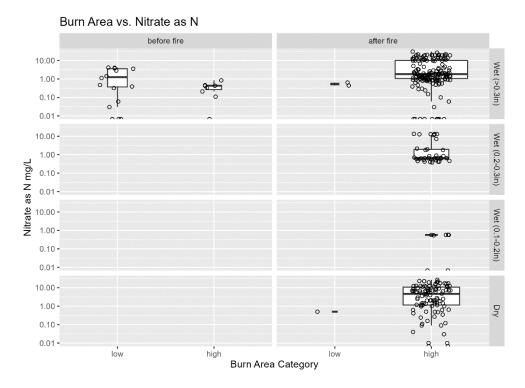


Figure 21. Box Plot of Burn Area Proportion vs. Total Nitrate as N

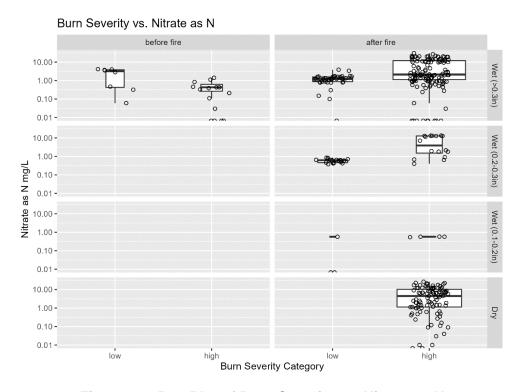


Figure 22. Box Plot of Burn Severity vs. Nitrate as N

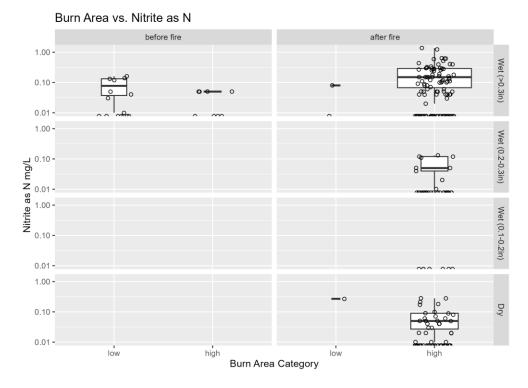


Figure 23. Box Plot of Burn Area Proportion vs. Nitrite as N

Zinc

Dissolved zinc concentrations were generally higher and more variable post-fire, with the highest concentrations in less burned drainage areas in terms of extent. Despite having a smaller sample size, there is a slightly more established trend for both particulate and total zinc concentrations, where an increase in concentration is observed post-fire and in conjunction with increasing burn area. There is also a general increase in zinc concentrations with an increase in precipitation. As observed across all heavy metals, particulate concentrations of zinc in particular demonstrated a clear increase in the post-fire samples as compared to the range before any fire impact. Figures 24 through 27 show the results for zinc in terms of burn area proportion and burn severity.

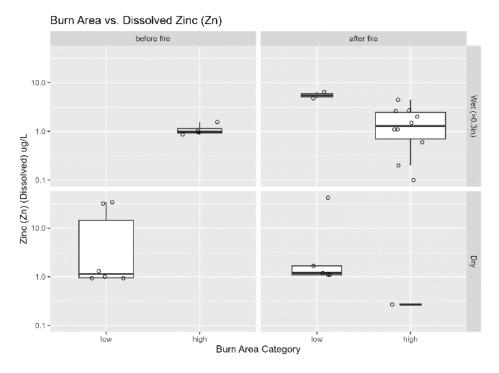


Figure 24. Box Plot of Burn Area Proportion vs. Dissolved Zinc

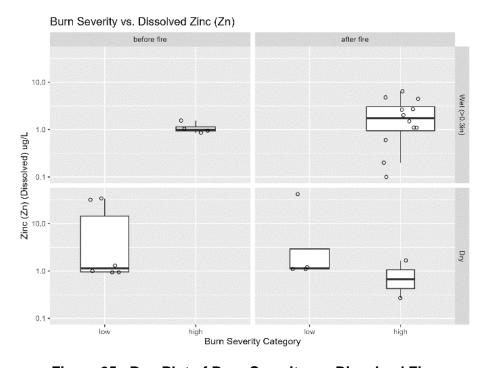


Figure 25. Box Plot of Burn Severity vs. Dissolved Zinc



Figure 26. Box Plot of Burn Severity vs. Particulate Zinc

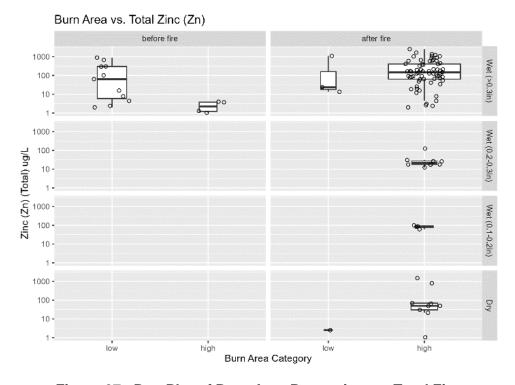


Figure 27. Box Plot of Burn Area Proportion vs. Total Zinc

Cadmium

Particulate and total cadmium concentrations increased following fire impacts, but dissolved cadmium concentrations decreased. Generally higher concentrations of cadmium were observed from low burn severity areas than from high burn severity areas. There was less of a difference in sample concentrations with burned area percentages, but a positive relationship does exist. All of these trends may be influenced by small sample size; however, the total cadmium vs. burn severity trend has more data to support it. Figures 28 through 31 show the results for cadmium in terms of burn area proportion and burn severity.

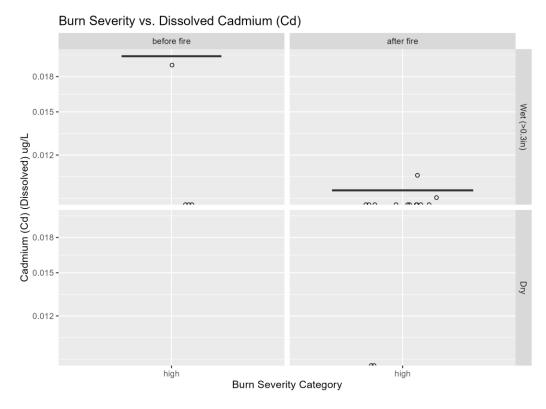


Figure 28. Box Plot of Burn Severity vs. Dissolved Cadmium

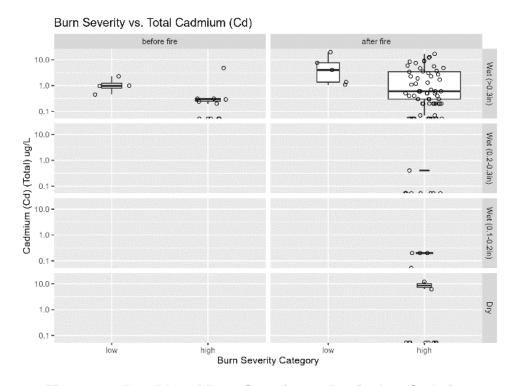


Figure 29. Box Plot of Burn Severity vs. Particulate Cadmium

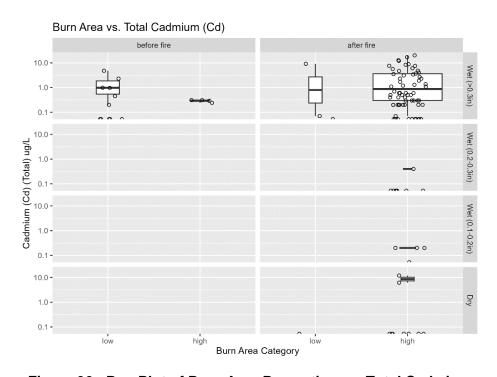


Figure 30. Box Plot of Burn Area Proportion vs. Total Cadmium

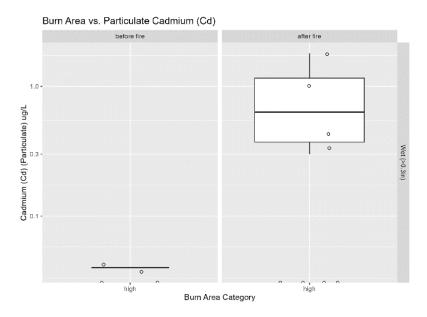


Figure 31. Box Plot of Burn Area Proportion vs. Particulate Cadmium

Lead and Copper

All combinations of lead and copper tend to increase during wet weather. The highest levels of total copper were observed in low burn severity areas, and the highest levels of total lead were observed in high burn severity areas. Burn area appears to play a much bigger role than burn severity for these metals. Increases in all fractions of both metals are observed post-fire. Figures 32 through 37 show the results for lead and copper in terms of burn area proportion and burn severity.

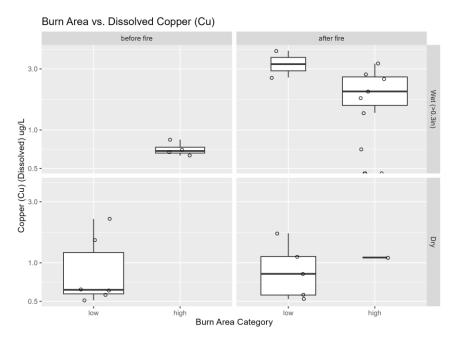


Figure 32. Box Plot of Burn Area Proportion vs. Dissolved Copper

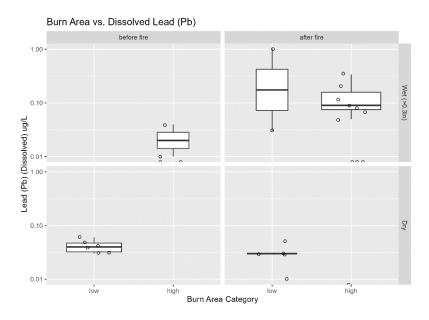


Figure 33. Box Plot of Burn Area Proportion vs Dissolved Lead

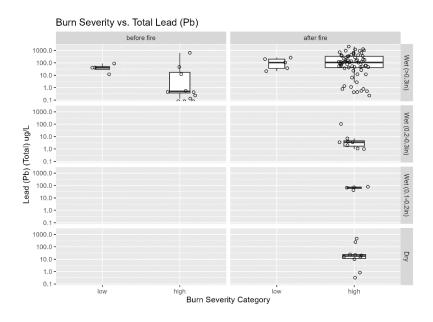


Figure 34. Box Plot of Burn Severity vs. Total Lead

Figure 35. Box Plot of Burn Area Proportion vs. Total Lead

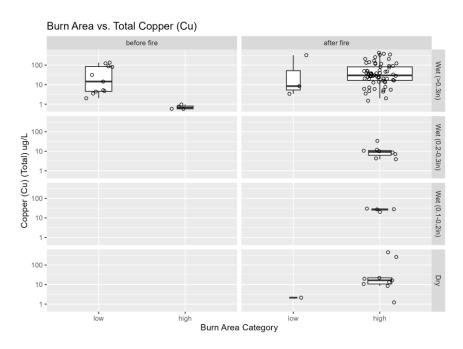


Figure 36. Box Plot of Burn Area Proportion vs. Total Copper

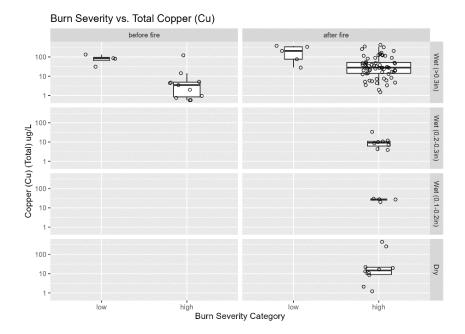


Figure 37. Box Plot of Burn Severity vs. Total Copper

General Remarks

In general, the following remarks apply to the Fire Effects Study:

- Sample sizes were limited in many cases. In addition to their size, most overrepresent or underrepresent given categories of data. Particularly, there is a bias in the dataset toward sampling during wet weather with more 0.3 inch of rain having fallen in the previous 3 days.
- Sampling efforts generally targeted post-fire, and many sites did not also have data compiled pre-fire.
- No clear linear relationships were observed with burn severity or burned area proportion across any constituent.
- General increases in pollutant concentrations were observed post-fire.

Appendix C provides all plots of the historical data analysis.

5.2 Bioassessment Data Analysis

Benthic Macroinvertebrate Community Data Analysis

The IBI assesses the biological integrity of freshwater streams in the southern California coastal region. This measurement combines seven key measures of organism abundance, diversity, sensitivity, and function into a single composite score that varies predictably in response to stressors.

Upper Los Angeles River Watershed Management Area Fire Effects Study Interim Report December 2023

The CSCI combines two indices of biological condition to assess BMI community health: (1) a predictive multi-metric index (pMMI) of biotic integrity that assesses functional attributes of the BMI community (similar to the IBI), and (2) a ratio of observed taxa at a site to the expected taxa at a site (O/E), which assesses taxonomic completeness. The combination of a pMMI and an O/E index improves the accuracy over using the two individually, because past experience has shown that both have limitations when assessing unusual BMI assemblages or sites with unique natural conditions.

Calculation of the CSCI score for an individual site is based on a comparison of the test site with a subset of reference sites within the statewide reference pool that are considered most analogous to the test site based on several natural abiotic ecological factors (i.e., latitude/longitude coordinates, site elevation, watershed topography, geology, and climate variables). CSCI scores for individual sites are then compared with the distribution of statewide reference site CSCI scores (i.e., mean score of 1.0) and placed into one of four biological condition categories based on that distribution (i.e., 1st, 10th, and 30th percentiles; Table 12).

Table 12. Biological Condition Categories for the California Stream Condition Index

Condition Category	CSCI Scoring Range	
Likely Intact	≥0.92	
Possibly Altered	0.79 to 0.91	
Likely Altered	0.63 to 0.78	
Very Likely Altered	0.0 to 0.62	

CSCI = California Stream Condition Index

Table 13 summarizes selected biological metrics describing the BMI communities.

Table 13. Summary of BMI Biological Metrics of the SGVCOG Fire Effects Study Bioassessment Monitoring Sites

Site Name	North Fork San Gabriel River Downstream	North Fork San Gabriel River Upstream
Site Code	SMC00464	405BH2A
Number of Organisms Identified	512	524
Estimated Abundance/sq ft1	248	254
Taxa Richness	25	20
EPT Taxa Richness	12	12
Dominant Taxon	Baetis sp./ Baetis adonis	Baetis sp./ Baetis adonis
Dominant Taxon (%)	65.0	65.3
Dominant Functional Feeding Group	Collector gatherer	Collector gatherer
Dominant Functional Feeding Group (%)	76.2	76.5
Intolerant Individuals (%)	6.6	5.3
Intolerant Taxa Richness	6	5
Tolerant Individuals (%)	1.8	1.1
Shannon-Weaver Index	1.50	1.40
Hilsenhoff Biotic Index	4.36	4.61
Collector-Filterers (%)	14.1	16.6
Collector-Gatherers (%)	76.2	76.6
Predators (%)	2.0	1.3
Scrapers (%)	2.9	2.9
Shredders (%)	2.1	1.3
Other (%)	2.7	1.3

^{1.} Estimate is based on the number of organisms in the subsample, and the sample sorted percentage.

BMI = benthic macroinvertebrate; EPT = ephemeroptera, plecoptera, and trichoptera taxa; SGVCOG = San Gabriel Valley Council of Governments; sq ft = square foot (feet); WMA = watershed management area

Stream Bioassessment Site Discussion: Preliminary Results

The discussion in this section is based on preliminary results of the bioassessment sampling; the results have not been analyzed completely at the time of this interim report. Based on the BMI communities at the two sites, there was very little difference between the upstream and downstream locations. As was intended in the Study design, both sites had similar physical habitat conditions (Figures 38 and 39), with instream habitats dominated by large rocky substrates, high current velocity and flow volume, and few aquatic macrophytes. Both were in high-quality riparian zones dominated by native vegetation with natural, near reference quality water sources. CRAM scores evaluating the instream and riparian wetland habitat quality were essentially identical at both sites (Table 14).

Table 14. Summary of BMI CRAM Scores for the SGVCOG Fire Effects Study Bioassessment Monitoring Sites

Parameter	North Fork San Gabriel River Downstream SMC00464	North Fork San Gabriel River Upstream 405BH2A
Stream Corridor Continuity	92	92
Hydrology	100	100
Physical Structure	88	88
Biotic Structure	83	81
Overall Site Score	91	90

SGVCOG = San Gabriel Valley Council of Governments.

Flow was still elevated at the time of sampling on June 29, 2023, after an unusually heavy storm season, and the BMI communities may not have fully recovered from the associated stormwater scour. Regardless, the BMI communities were very similar. Both sites were dominated by the mayfly, Baetis sp., and most of the community metric values were similar (Table 13). For example, the dominant taxon (Baetis sp.) composed a similar percentage of the communities at both sites, with 65.0 percent and 65.3 percent, respectively. Similarly, intolerant (i.e., sensitive) taxa richness scored 6 and 5, respectively, and percent intolerant individuals scored 6.6 percent and 5.3 percent at the downstream and upstream sites, respectively. Community-based index scores were also similar, with IBI scores of 33 downstream and 34 upstream and CSCI scores of 1.00 downstream and 0.97 upstream (Table 7). Both sites were rated as "Poor" by the IBI but were rated as "Likely Intact" (the highest quality category possible) according to the CSCI. In general, the CSCI is more accurate and is less likely than the IBI to result in false indications of nonreference conditions (Dr. Raphael Mazor, SCCWRP, personal communication). This result is because the IBI scoring system uses a fixed pool of reference sites to set its BMI community threshold criteria, whereas the CSCI adjusts its threshold expectations based on site-specific environmental parameters.

Very little difference was observed in the analytical chemistry for both sites. The only notable difference was in ash-free dry weight of benthic algae sampled (a measure of algal biomass), with results at the downstream site 1.7 times higher than results at the upstream site. However, this finding could just be a product of the sampling methodology in which samples are collected from random locations throughout each reach; without replication, it is not possible to determine whether this is a true difference in sites or an artifact of the sampling methodology.

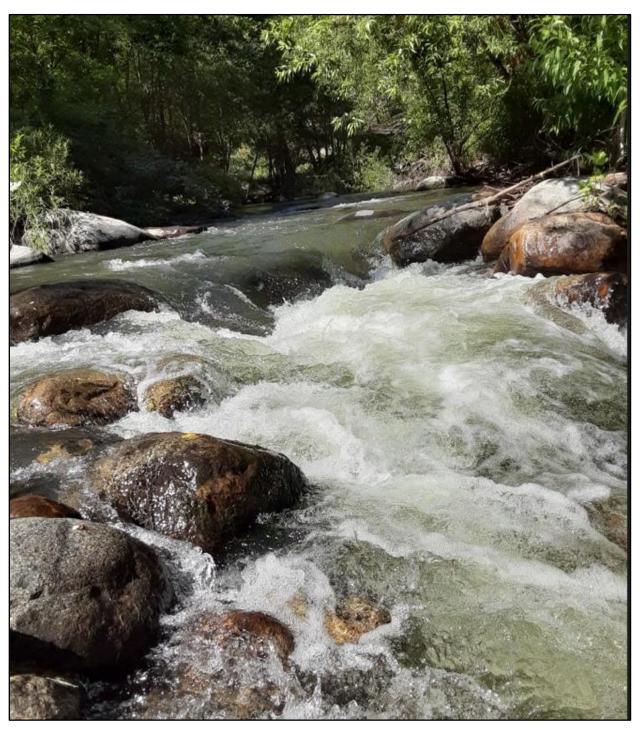


Figure 38. West Fork San Gabriel River Downstream Site SMC00464, Transect E Looking Upstream

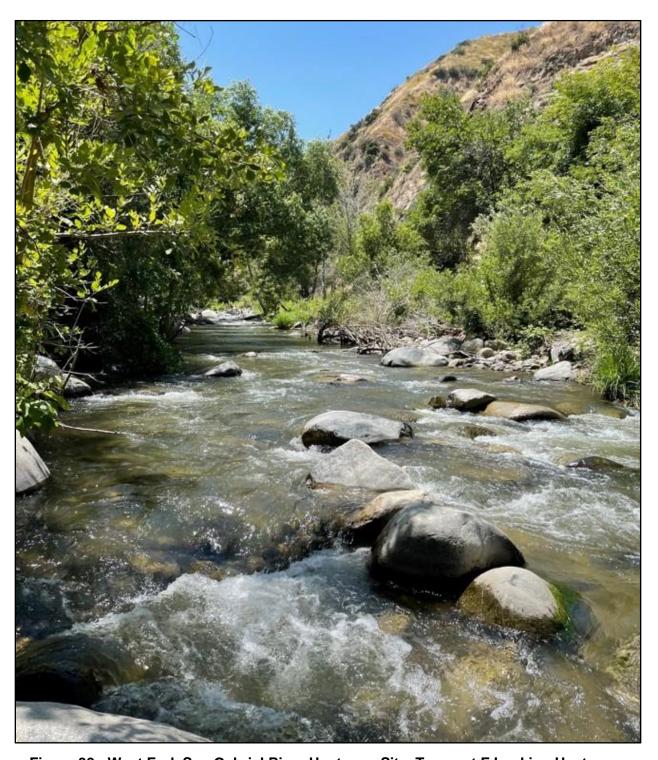


Figure 39. West Fork San Gabriel River Upstream Site, Transect F Looking Upstream

Table 15. Summary of Chemistry Analytes for the SGVCOG Fire Effects Study Bioassessment Monitoring Sites

	Analyte Units	North Fork San Gabriel	North Fork San Gabriel
Analyte		River Downstream SMC00464	River Upstream 405BH2A
Calaium Tatal	ma/l		
Calcium, Total	mg/L	42.6	37.9
Magnesium, Total	mg/L	10.2	10.0
Aluminum, Total	μg/L	270	250
Copper, Total	μg/L	0.94	1.0
Iron, Total	μg/L	370	370
Manganese, Total	μg/L	69	85
Nickel, Total	μg/L	ND	ND
Lead, Total	μg/L	0.36	0.34
Selenium, Total	μg/L	0.092	0.086
Zinc, Total	μg/L	ND	ND
Calcium, Dissolved	μg/L	38.3	42.0
Aluminum, Dissolved	μg/L	12	10
Copper, Dissolved	μg/L	0.61	0.40
Iron, Dissolved	μg/L	20	16
Manganese, Dissolved	μg/L	62	48
Nickel, Dissolved	μg/L	ND	ND
Lead, Dissolved	μg/L	ND	ND
Selenium, Dissolved	μg/L	0.083	0.079
Zinc, Dissolved	μg/L	ND	ND
Nitrogen, Total	mg/L	0.38	0.42
Nitrate as N	mg/L	0.26	0.27
Nitrate + Nitrite as N	μg/L	260	270
Nitrite as N	μg/L	ND	ND
Phosphorus as P, Total	mg/L	0.038	0.051
Phosphorus as P, Dissolved	mg/L	0.025	0.034
Ammonia as N	mg/L	0.032	0.069
Nitrogen, Total Kjeldahl	mg/L	0.13	0.15
Hardness as CaCO3	mg/L	149	136
Total Suspended Solids	mg/L	5	6
Total Dissolved Solids	mg/L	200	190
Total PAHs	μg/L	ND	ND
Chlorophyll a (water column)	mg/m ³	ND	ND
Chlorophyll a (benthic)	mg/m ²	3.78	3.41
Ash-free Dry Weight (benthic)	mg/m ²	12,700	7,420

CaCO3 = calcium carbonate; mg/L = milligram(s) per liter; mg/m² = milligram(s) per square foot; mg/m³ = milligram(s) per cubic foot; N = nitrogen; ND = not detected; P = phosphorus; PAH = polycyclic aromatic hydrocarbon; SGVCOG = San Gabriel Valley Council of Governments

Upper Los Angeles River Watershed Management Area Fire Effects Study Interim Report December 2023

Stream Bioassessment Conclusion

Overall, very little difference was observed between the two locations sampled. Biotic (BMI and algal biomass) and abiotic parameters (physical habitat and analytical chemistry) measured were essentially identical. Additionally, any degradation that might have been previously noted in the biological or chemical measures as a result of the Bobcat Fire had since abated, because all indicators sampled were in near-reference condition.

6.0 STAKEHOLDER ENGAGEMENT

The Study team sought opportunities to engage interested stakeholders in negotiating data sharing, foster inclusivity, and identify collaborators and potential funding partners (Table 16). The Study team also convened meetings to discuss the approach and findings of monitoring and modeling efforts with regulators, nongovernmental organizations, and other stakeholders. Webinars, technical stakeholder meetings, guided tours, and other forms of outreach were used. The Study team also encourages sharing Study outcomes with a broader audience of stakeholders via a website, local symposia, regional stakeholder meetings, and conferences.

Furthermore, the Study team invited Regional Board staff to participate in the Study, receive updates on progress, and provide feedback regarding the methods and findings of the Study. Regional Board input is also considered with regard to how findings can be used to achieve water quality objectives in the Los Angeles region. Regional Board staff are also invited to participate in technical stakeholder group meetings, webinars, guided tours, and other outreach.

The goal of stakeholder outreach is to share findings about wildfire impacts on water quality, coordinate with related studies, leverage potential funding sources, help promote more effective management strategies, and integrate early feedback from decision makers and interested parties on potential policy changes.

Affected Parties

Outcome Stakeholders

General Outreach

Water Boards

Water Boards

Water Boards

Water Boards

Los Angeles - R4

WATER BOARDS

Los Angeles - R4

ULAR

TREEPEOPLE

Table 16. Fire Effects Study Stakeholders

SCCWRP= Southern California Coastal Water Research Project; USGS = Unites States Geological Survey; ULAR = Upper Los Angeles River

6.1 Regional Engagement and Public Outreach

The Study team has met with the Technical Advisory Committee (TAC) on a semi-monthly basis as needed. Meetings are held when there are sufficient Study updates. These meetings are opportunities for partnering agencies of the ULAR WMG to keep up with the latest Study progress and provide feedback.

Upper Los Angeles River Watershed Management Area Fire Effects Study Interim Report December 2023

Meeting Dates

Meetings were held on the following dates:

- September 22, 2022
- November 16, 2022
- January 18, 2023
- April 19, 2023
- July 19, 2023
- September 27, 2023

Introductory Technical Stakeholder Group Meeting

On April 11, 2023, the Study team convened the first Technical Stakeholder Group (TSG) virtual meeting. The meeting had 47 attendees. Efforts were made to include a wide variety of stakeholders diverse backgrounds and affiliations.

The goals of his meeting were as follows:

- Provide an overview of the project objectives, methodologies, and expected outcomes of the Study.
- Involve technical stakeholders to share expertise and data about the impact of wildfires on water quality.
- Involve technical stakeholders to leverage efforts and coordinate closely related studies.
- Share Study progress and results with stakeholders to promote knowledge on the impacts
 of wildfires on water quality and develop effective management strategies.
- Integrate early feedback from decision makers and interested parties on potential policy changes related to wildfire impacts.
- Encourage attendees to establish connections with the Study team and foster opportunities for collaboration, knowledge sharing, and data exchange.

6.2 Other Engagement

The Study team has also reached out to a variety of stakeholders conducting similar studies of the effects fire on the watershed to foster opportunities to collaborate. The Study team has met with the following groups or individuals:

- California State University Council on Ocean Affairs, Science, and Technology (COAST) program directors
- Ken Susilo (Geosyntec)
 - o March 16, 2023

Upper Los Angeles River Watershed Management Area Fire Effects Study Interim Report December 2023

SCCWRP

- September 17, 2022
- November 14, 2022
- March 30, 2023
- o June 19, 2023
- CalFire
 - o July 6, 2023

2023 State of the Los Angeles River Watershed Symposium

On September 19, 2023, the Study team was invited to participate in the 2023 State of the Los Angeles River Watershed Symposium (SOW), which was hosted by the Council for Watershed Health (CWH) and held at the Autry Museum of the American West. The Study team was featured in a dedicated breakout session titled "After the Blaze: Assessing Fire's Impact on Streams, Wildlife, and Water Quality" (Figure 40). During this session, the Study team delivered a presentation to provide a Study overview, progress, and preliminary findings and insights.

Following the presentations, the panel of speakers engaged with the audience, addressing their questions and facilitating a dynamic exchange of ideas. The breakout session attracted an audience of more than 40 participants, and it was marked by lively discussions and a notable expression of interest in the Study. The opportunity to present at the 2023 SOW Symposium provided valuable exposure for the Study effort and has created a promising avenue for future collaborations.

6.3 Regulatory Support Progress

Quarterly Regional Board Meetings

The Study team has met with the Regional Board on a quarterly basis. These meetings serve as a valuable platform for the Study team to provide updates on the progress of the research and to solicit the input of the Regional Board regarding the potential regulatory actions that may be informed by the outcomes of the Study.

Meeting Dates

Meetings were held on the following dates:

- September 27, 2023
- January 11, 2023
- April 18, 2023
- July 12, 2023
- October 11, 2023

Figure 40. State of the Los Angeles River Watershed Symposium Breakout Session

Upper Photo: Project manager presenting to breakout session attendees. Lower photo: Breakout session panel discussion (from left to right: Matt Rich (WSP USA Environment & Infrastructure Inc.);

Pete Wohlgemuth (United States Forest Service); Scott Hauswirth, Ph.D. (California State University Northridge); and Katy Delaney, Ph.D. (National Park Service).

7.0 NEXT STEPS

The Study will continue through December 2024. Continued efforts and next steps are described below.

7.1 Quarterly and Annual Reporting

Quarterly and annual reports will continue to be submitted on the Safe, Clean Water Program (SCWP) quarterly reporting portal for the ULAR and Rio Hondo WASCs. Each quarterly and annual report will include an update on the project schedule, metrics and targets, activities completed, and expenditures during the reporting period, if applicable.

7.2 Monitoring

The Study team will continue fire watch efforts to identify qualifying wildfires within the ULAR WMA that would contribute discharges to water bodies in the ULAR watershed and demonstrate measurable impacts on water quality. The Study team will mobilize for rapid response monitoring if a suitable wildfire occurs. If no new wildfires occur within or near the Study area, the Study team will continue to monitor the stations described in Section 3.1.1 to assess impacts of the Bobcat Fire and evaluate changes in water quality over time.

7.3 Modeling

The results of the historical data analysis will be used to establish subwatershed and HRU-specific parameter sets in the LSPC watershed model representing the range of post-fire scenarios characterized. Each scenario combination will be run and summarized for changes to baseline runoff and pollutant loading. Next, the post-fire scenarios will be layered with updated weather inputs based on the climate change scenarios characterized. Each of these will also be run and summarized for changes to baseline runoff and pollutant loading for a full range of potential implications. The modeling methodologies and results will be summarized as part of the Final Report. The changing baseline pollutant loads under the post-fire and climate change scenarios are intended to support meaningful engagement with regulators regarding appropriate post-fire numeric goals (specifically related to nutrients and metals) for the MS4 Permittees that are still protective of receiving waters beneficial uses but realistic under the influence of such environmental factors.

The list of representative structural control measures for the Fire Effects Model will be finalized in coordination with the Technical Advisory Committee. Once finalized, the updated watershed model outputs from the post-fire and climate change scenarios will be used to run through the python-based BMP models representing the selected projects. The changes to a project's estimated pollutant load reductions across each scenario will be summarized. The modeling methodologies and results will be summarized in a post-fire BMP performance report. The range of BMP performance results will be used to help recommend more resilient BMP designs for cost-effective approaches considering potential fire cases and projected climate change.

7.4 Stakeholder Engagement

Continuing Efforts

As the Study progresses, existing engagement efforts with the TAC and Regional Board will remain consistent and follow their established regular schedules. The Study team will continue to provide regular updates and incorporate feedback for the Study.

Additionally, the SGVCOG maintains a website to make information about the study available to the public. Appendix D provides an updated Study Fact Sheet that includes updates on Year 1 efforts, which will be available on the website.

Fall 2023 Technical Stakeholder Group Meeting

Another TSG meeting is scheduled for November 2023. In contrast to the previous meeting, the TAC is interested in holding this meeting in person with a virtual option. During this meeting, the primary objectives include the following:

- Provide interim updates on the progress of the research, highlighting significant milestones, findings, and developments since the previous TSG meeting.
- Present updates on the modeling work undertaken, share insights into the methodologies used, and discuss any noteworthy outcomes or adjustments.
- Actively encourage and solicit feedback from TSG members, aiming to incorporate their insights and recommendations into the interim report and ongoing research efforts.

Stakeholder Tour of Lakes and Historical Burn Sites in the ULAR Watershed

A stakeholder tour of lakes and historical burn sites is being considered. The intent of the tour is to provide stakeholders with firsthand exposure to the impact of real-life best management practices on landscape transformation and their potential influence on modeling efforts. Sites suggested by the TAC, TSG, and other stakeholders have been collected.

Final Report Presentation

At the end of the Study, the Study team will organize a final report presentation webinar. During this event, the team will comprehensively discuss the definitive findings and outcomes of the Study research. Significantly, an open invitation will be extended to the public, offering a valuable opportunity for a diverse audience to access insights into the Study results and their broader implications. Public participation and engagement is encouraged. Further details regarding the date, time, and registration for this webinar will be communicated before the event.

Draft Los Angeles County Water Plan

The Los Angeles County Water Plan (CWP) focuses on achieving regional water resilience through collaborative strategies with more than 200 agencies partnering to manage the complexities of the region's water systems and the needs of the communities and environment. The CWP is based on a framework of targets and strategies supported by specific actions.

Upper Los Angeles River Watershed Management Area Fire Effects Study Interim Report December 2023

One of the CWP's 12 strategies for achieving water resilience is mitigating wildfire effects on water supply and water quality through the following actions:

- Organize a regional wildfire prevention collective.
- Create a programmatic permitting tool/process with the United States Army Corps of Engineers for the 404 permit.
- Enhance low-water-use landscaping education programs.
- Collaborate on identifying and pursuing funding opportunities.
- Enhance existing hazard mitigation plans to include regional fire management strategies.
- Advocate for modifications to existing air quality regulations.
- Explore potential land, trail, and forestry management efforts.
- Support exploration of alternatives to fire retardants that contain per- and polyfluoroalkyl substances (PFAS)/ perfluorooctanoic acid (PFOA).

This Study helps further the understanding of post-fire impacts by providing data on pollutant loading from wildfires and other downstream impacts and predictive models that factor land use changes, environmental changes due to wildfires, and climate change scenarios. These resources can inform management on how to best prepare for wildfires and support fire mitigation strategies. Considering that the CWP and this Study aim to achieve similar goals, there may be opportunities for collaboration.

8.0 CONCLUSION AND RECOMMENDATIONS

This Study will continue to review existing data and collect new data to characterize wildfire impacts on water quality, generate predictive models that illustrate water quality changes and BMP effectiveness because of wildfire conditions and climate change scenarios, engage stakeholders, including potential project partners and regulators, and educate the public about wildfire impacts.

This approach will continue to be implemented to achieve the goals set forth in the SCWP, including improving water quality and attaining water quality requirements, leveraging other funding sources to maximize the goals of the SCWP, implementing new technologies and practices, and investing in independent research.

Benefits of the Study include development of effective and resilient environmental management strategies that adapt to the changing landscape of the Los Angeles region. These management strategies will be informed by the data and models developed for the Study and the regional collaboration initiated by the Study team with stakeholders and the public.

A recommendation to this Study's water quality monitoring efforts would be to install automated sampling equipment at monitoring sites. However, permitting and access limitations have prevented the installation of automated sampling equipment, and these types of permissions may not be granted within the timeframe needed to collect wet weather samples.

9.0 REFERENCES

- Collins, J.N., E.D. Stein, M. Sutula, R. Clark, A.E. Fetscher, L. Grenier, C. Grosso, and A. Wiskind. 2013. *California Rapid Assessment Method (CRAM) for Wetlands*. Volume 6.1. 157 pp. Available at: http://www.cramwetlands.org/
- Mazor, R.D., A. Rehn, P.R. Ode, M. Engeln, K. Schiff, E. Stein, D. Gillett, D. Herbst, C.P. Hawkins. 2016. Bioassessment in complex environments: Designing an index for consistent meaning in different settings. Freshwater Science 35(1):249–271.
- National Aeronautics and Space Administration (NASA) Earth Observatory. 2020. *Bobcat Fire Scorches Southern California*. Available at: Bobcat Fire Scorches Southern California (nasa.gov).
- Ode P.R., A.C. Rehn, and J.T. May. 2005. A Quantitative Tool for Assessing the Integrity of Southern Coastal California Streams. In *Environmental Management*. 35(1):1–13.
- Ode, P.R., A.E. Fetscher, and L.B. Busse. 2016. Standard Operating Procedures for the Collection of Field Data for Bioassessments of California Wadeable Streams: Benthic Macroinvertebrates, Algae, and Physical Habitat. California State Water Resources Control Board Surface Water Ambient Monitoring Program (SWAMP) Bioassessment Standard Operating Procedure 004.
- Richards, A. and C. Rogers. 2011. List of Macroinvertebrate Taxa from California and Adjacent States and Ecoregions; and Standard Taxonomic Effort. Accessed at: http://www.safit.org/Docs/STE_1_March_2011_7MB.pdf. Edited by A. Richards and D. Rogers. March 2011.
- Leecaster, M., S. Kenneth, and Tiefenthaler, L. 2000. Assessment of Efficient Sampling Designs for Urban Stormwater Monitoring. March 2002. Revised July 1, 2001. Accessed at: https://www.sciencedirect.com/science/article/abs/pii/S0043135401003530
- Li, S. and T. Banerjee. 2021. Spatial and temporal pattern of wildfires in California from 2000 to 2019. Sci Rep 11, 8779. https://doi.org/10.1038/s41598-021-88131-9
- Stein E.D., J.S. Brown, T.S. Hogue, M.P. Burke, and A. Kinoshita. Stormwater contaminant loading following southern California wildfires. *Environ Toxicol Chem.* 2012 Nov;31(11):2625-38. doi: 10.1002/etc.1994. Epub 2012 Sep 18. PMID: 22927117.
- Southern California Coastal Water Research Project (SCCWRP). 2009. Effects of Post-fire Runoff on Surface Water Quality: Development of a Southern California Regional Monitoring Program with Management Questions and Implementation Recommendations. Technical Report 598 August 2009.
- Surface Water Ambient Monitoring Program (SWAMP). 2016. State Water Resources Control Board.
- United States Environmental Protection Agency (USEPA). 2017. U.S. EPA Interim Revised NPDES Inspection Manual: Chapter 5 Sampling. EPA 305-K-17-001.

- United States Environmental Protection Agency (USEPA). 1996. *Method 1669, Sampling Ambient Water for Trace Metals at EPA Water Quality Criteria Levels*. July 1996.
- WSP USA Environment & Infrastructure (previously Wood Environment and Infrasturcture) et al. 2023. Upper Los Angeles River Watershed Management Area-Fire Effects Study. Work Plan and Quality Assurance Project Plan. Submitted to the SGVCOG. Final November 2022. Amended March 2023.
- Woodward, M.E., J. Slusark, and P.R. Ode. 2012. SWAMP Bioassessment Procedure 2012. Standard Operating Procedures for Laboratory Processing and Identification of Benthic Macroinvertebrates in California. October 2012. Available at: http://www.waterboards.ca.gov/water_issues/programs/swamp/docs/bmi_lab_sop_final.pdf.

Upper Los Angeles River Watershed Management Area Fire Effects Study Interim Report December 2023

Appendix A. Laboratory Reports

Upper Los Angeles River Watershed Management Area Fire Effects Study Interim Report December 2023

Appendix B. Data Quality Assurance/Quality Control

Upper Los Angeles River Watershed Management Area Fire Effects Study Interim Report December 2023

Appendix C. Historical Data Analysis Modeling Box Plots

Upper Los Angeles River Watershed Management Area Fire Effects Study Interim Report December 2023

Appendix D. Fire Effects Study Webpage

Upper Los Angeles River Watershed Management Area Fire Effects Study Interim Report November 2023 – DRAFT

Dry Weather Water Quality Data

FINAL REPORT

Work Orders: 2L08112 Report Date: 1/09/2023

Received Date: 12/8/2022

Turnaround Time: Normal

Phones: (858) 514-7797

Fax: (858) 278-5300

P.O. #:

Billing Code:

Attn: Dylan Cawthorne

Client: WSP USA E&I Inc. - San Diego

Project: SGVCOG Fire Effects Study

9177 Sky Park Court, Ste A San Diego, CA 92123

DoD-ELAP ANAB #ADE-2882 • DoD-ISO ANAB # • ELAP-CA #1132 • EPA-UCMR #CA00211 • HW-DOH #4047 • ISO17025 ANAB #L2457.01 • LACSD #10143 • NELAP-OR #4047

This is a complete final report. The information in this report applies to the samples analyzed in accordance with the chain-of-custody document. Weck Laboratories certifies that the test results meet all requirements of TNI unless noted by qualifiers or written in the Case Narrative. This analytical report must be reproduced in its entirety.

Dear Dylan Cawthorne,

Enclosed are the results of analyses for samples received 12/08/22 with the Chain-of-Custody document. The samples were received in good condition, at 4.8 °C and on ice. All analyses met the method criteria except as noted in the case narrative or in the report with data qualifiers.

Reviewed by:

Chris Samatmanakit Project Manager

1: State

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Reported:

01/09/2023 10:46

Sample Name	Sampled By	Lab ID	Matrix	Sampled	Qualifiers
F_193_R-FES-D1-120822-P	Client	2L08112-01	Water	12/08/22 07:15	
F_194B_R-FES-D1-120822-P	Client	2L08112-02	Water	12/08/22 08:04	
ARCAD_WA_CON-FES-D1-120822-P	Client	2L08112-03	Water	12/08/22 09:15	
ARCAD_WA_CON-FES-D1-120822-D	Client	2L08112-04	Water	12/08/22 09:15	

Project Manager: Dylan Cawthorne

2L08112 Page 2 of 31

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123

2L08112

Project Number: SGVCOG Fire Effects Study

Project Manager: Dylan Cawthorne

Reported:

Page 3 of 31

01/09/2023 10:46

Sample Results

Sample:	F_193_R-FES-D1-120822-P						Sampled: 12/08/22	7:15 by Clier
	2L08112-01 (Water)							
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifi
nventional Ch	nemistry/Physical Parameters I	by APHA/EPA/ASTM Methods						
Method: EPA 3	350.1			Instr: AA06				
Batch ID: Wa	2L0971	Preparation: _NONE (WETCHEM)		Prepared: 12/1	13/22 11:52			Analyst: ym
Ammonia as	s N	0.033	0.017	0.10	mg/l	1	12/15/22	
Method: EPA 3	351.2			Instr: AA06				
Batch ID: Wa	2L1245	Preparation: _NONE (WETCHEM)		Prepared: 12/1	15/22 11:39			Analyst: YM
TKN		1.7	0.13	0.20	mg/l	1	12/19/22	
Method: EPA 3	353.2			Instr: AA01				
Batch ID: Wa	2L0757	Preparation: _NONE (WETCHEM)		Prepared: 12/0	09/22 17:05			Analyst: isn
Nitrate as N		0.086	0.040	0.20	mg/l	1	12/09/22 18:15	FILT,
Nitrite as N		ND	42	100	ug/l	1	12/09/22 18:15	FIL
Method: SM 2	540C			Instr: OVEN01				
Batch ID: W2		Preparation: _NONE (WETCHEM)		Prepared: 12/1	14/22 09:45			Analyst: tmp
Total Dissol		540	4.0	10	mg/l	1	12/14/22	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Method: SM 2	540D			Instr: OVEN15				
Batch ID: Wa		Preparation: _NONE (WETCHEM)		Prepared: 12/1	13/22 09:30			Analyst: me
	nded Solids			5	mg/l	1	12/13/22	, ,
avavalant Chr	amium bu IC							
exavalent Chro	•			L t 1.C12				
Method: EPA 2		Programme NONE (LC)		Instr: LC13	14/22 14:20			
Batch ID: W2		Preparation: _NONE (LC) 0.43	0.0079	Prepared: 12/1 0.020	14/22 14:30 ug/l	1	12/14/22	Analyst: pj
		0.48	0.0079	0.020	· ·	1	12/14/22	
Chromium	6+, Dissolved	U.46	0.0079	0.020	ug/l	'	12/14/22	
etals by EPA 2	00 Series Methods							
Method: Calcu	ılation			Instr: [CALC]				
Batch ID: [C/	ALC]	Preparation: [CALC]		Prepared: 12/1	14/22 12:13			Analyst: kvn
Hardness as	s CaCO3, Total	409	0.219	3.31	mg/l	1	12/15/22	
Method: EPA 2	200.7			Instr: ICP03				
Batch ID: Wa	2L1115	Preparation: EPA 200.2		Prepared: 12/1	14/22 12:13			Analyst: kvn
Calcium, To	tal	112	0.0234	0.500	mg/l	1	12/15/22	
Magnesium	, Total	31.1	0.0390	0.500	mg/l	1	12/15/22	
Phosphorus	s, Dissolved	0.027	0.018	0.050	mg/l	1	12/15/22	
Phosphorus	s, Total	0.13	0.018	0.050	mg/l	1	12/15/22	
Method: EPA 2	200.8			Instr: ICPMS06	5			
Batch ID: Wa	2L1122	Preparation: EPA 200.2		Prepared: 12/1	14/22 15:50			Analyst: ty
Aluminum,			4.4	20	ug/l	1	12/15/22	,
Aluminum,	Total		4.4	20	ug/l	1	12/15/22	
Antimony, D		0.73	0.089	0.50	ug/l	1	12/15/22	
		0.80	0.089	0.50	ug/l	1	12/15/22	
Antimony, T								

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123

Project Number: SGVCOG Fire Effects Study

Project Manager: Dylan Cawthorne

Reported:

(Continued)

01/09/2023 10:46

Sample Results

Sample:	F_193_R-FES-D1-120822-P						Si	ampled: 12/08/2	•
	2L08112-01 (Water)								(Continued
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualific
-	A 200 Series Methods (Continue	ed)							
Method: EP/					Instr: ICPMS06				
Batch ID: Y		Preparation: EPA 200.2	4.2	0.074	Prepared: 12/ ² 0.40	14/22 15:50 ug/l	1	12/15/22	Analyst: ty
•				0.062	0.10	ug/l	1	12/15/22	
Beryllium				0.029	0.10	ug/l	1	12/15/22	
-	,, 1044			0.042	0.20	ug/l	1	12/15/22	
Cadmium	,			0.042	0.20	ug/l	1	12/15/22	
	,			0.042	0.20	_	1	12/15/22	
	, 2.00000		0.40	0.089	0.20	ug/l	1	12/15/22	
Chromiun	,					ug/l			
Copper, D				0.23	0.50	ug/l	1	12/15/22	
Copper, T				0.23	0.50	ug/l	1	12/15/22	
Iron, Diss			• •	3.9	20	ug/l	1	12/15/22	
Iron, Tota				3.9	20	ug/l	1	12/15/22	
Lead, Dis				0.083	0.20	ug/l	1	12/15/22	
Lead, Tota				0.083	0.20	ug/l	1	12/15/22	
Nickel, Di				0.16	2.0	ug/l	1	12/15/22	
Nickel, To	otal		2.2	0.16	2.0	ug/l	1	12/15/22	
Selenium	, Dissolved		0.15	0.067	0.40	ug/l	1	12/15/22	
Selenium	, Total		0.17	0.067	0.40	ug/l	1	12/15/22	
Silver, Dis	solved		ND	0.030	0.20	ug/l	1	12/15/22	
Silver, Tota	al		ND	0.13	0.20	ug/l	1	12/15/22	
Thallium,	Dissolved		ND	0.021	0.20	ug/l	1	12/15/22	
Thallium,	Total		ND	0.021	0.20	ug/l	1	12/15/22	
Zinc, Diss	solved		1.9	0.80	10	ug/l	1	12/15/22	
Zinc, Tota	al		6.2	1.7	10	ug/l	1	12/15/22	
/lethod: EP/	A 245.1				Instr: HG03				
Batch ID:	W2L1127	Preparation: EPA 245.1			Prepared: 12/	14/22 13:21			Analyst: KVN
Mercury, [Dissolved		ND	0.037	0.050	ug/l	1	12/15/22	
Mercury, 7	Total		ND	0.037	0.050	ug/l	1	12/15/22	
mivolatile (Organics - Low Level by Tandem	GC/MS/MS							
Method: EPA	A 625.1				Instr: GCMS15				
Batch ID:	W2L1204	Preparation: EPA 3535/SPE			Prepared: 12/	15/22 08:26			Analyst: EF
Acenaphtl	hene		ND	6.0	25	ng/l	1	12/20/22	M-(
Acenaphtl	hylene		ND	5.0	25	ng/l	1	12/20/22	M-0
Anthracen	ne		ND	5.5	25	ng/l	1	12/20/22	M-0
Benzo (a)	anthracene		ND	4.6	25	ng/l	1	12/20/22	M-0
Benzo (a)	pyrene		ND	4.8	25	ng/l	1	12/20/22	M-0
Benzo (b)	fluoranthene		ND	8.0	25	ng/l	1	12/20/22	M-0
08112									Page 4 o

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Dylan Cawthorne

Reported:

01/09/2023 10:46

Sample Results

Sample:	F_193_R-FES-D1-120822-P					S	ampled: 12/08/22	7:15 by Client
	2L08112-01 (Water)							(Continued)
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
emivolatile (Organics - Low Level by Tandem G	C/MS/MS (Continued)						
Method: EP	A 625.1			Instr: GCMS15				
Batch ID:	W2L1204	Preparation: EPA 3535/SPE		Prepared: 12/1	5/22 08:26			Analyst: EFC
Benzo (g,	h,i) perylene	ND	5.0	25	ng/l	1	12/20/22	M-02
Benzo (k)	fluoranthene	ND	6.0	25	ng/l	1	12/20/22	M-02
Chrysene		ND	7.0	25	ng/l	1	12/20/22	M-02
Dibenzo (a,h) anthracene	ND	6.0	25	ng/l	1	12/20/22	M-02
Fluoranth	ene	ND	7.5	25	ng/l	1	12/20/22	M-02
Fluorene		ND	5.5	25	ng/l	1	12/20/22	M-02
Indeno (1	,2,3-cd) pyrene	ND	4.8	25	ng/l	1	12/20/22	M-02
Naphthale	ene		16	25	ng/l	1	12/20/22	B, M-02
Phenanth	rene	ND	15	25	ng/l	1	12/20/22	M-02
Pyrene -		ND	7.0	25	ng/l	1	12/20/22	M-02
Surrogate(s)								
1,3-Dimet	thyl-2-nitrobenzene	85%	Conc: 425	62-120			12/20/22	
Perylene-	d12	80%	Conc: 402	36-120			12/20/22	

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Reported:

(Continued)

Page 6 of 31

01/09/2023 10:46

5

2L08112

Sample Results

Project Manager: Dylan Cawthorne

Sample:	F_194B_R-FES-D1-120822-P							Sampled: 12/08/22	8:04 by Clien
	2L08112-02 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
onventional	Chemistry/Physical Parameters by	y APHA/EPA/ASTM Methods							
Method: EPA	A 350.1				Instr: AA06				
Batch ID: \	W2L0971	Preparation: _NONE (WETCHEM)			Prepared: 12/1	13/22 11:52			Analyst: ym
Ammonia	as N		0.044	0.017	0.10	mg/l	1	12/15/22	
Method: EPA	A 351.2				Instr: AA06				
Batch ID: \	W2L1245	Preparation: _NONE (WETCHEM)			Prepared: 12/1	15/22 11:39			Analyst: YM
TKN			2.0	0.13	0.20	mg/l	1	12/19/22	
Method: EPA	A 353.2				Instr: AA01				
Batch ID: \	W2L0757	Preparation: _NONE (WETCHEM)			Prepared: 12/0	09/22 17:05			Analyst: ism
Nitrate as	N		ND	0.040	0.20	mg/l	1	12/09/22 17:57	FIL
Nitrite as N	\		ND	42	100	ug/l	1	12/09/22 17:57	FIL
Method: SM	2540C				Instr: OVEN01				
Batch ID: \	W2L1062	Preparation: _NONE (WETCHEM)			Prepared: 12/1	14/22 09:45			Analyst: tmp
Total Diss	olved Solids		410	4.0	10	mg/l	1	12/14/22	
Method: SM	2540D				Instr: OVEN15				
Batch ID: \	W2L0904	Preparation: _NONE (WETCHEM)			Prepared: 12/1	13/22 09:30			Analyst: me
Total Susp	pended Solids		7		5	mg/l	1	12/13/22	
lexavalent Ch	nromium by IC								
Method: EPA	A 218.6				Instr: LC13				
Batch ID: \	W2L1136	Preparation: _NONE (LC)			Prepared: 12/1	14/22 14:30			Analyst: pj:
Chromium	1 6+		0.32	0.0079	0.020	ug/l	1	12/14/22	
Chromium	1 6+, Dissolved		0.41	0.0079	0.020	ug/l	1	12/14/22	
letals by EPA	200 Series Methods								
Method: Cal	culation				Instr: [CALC]				
Batch ID: [CALC]	Preparation: [CALC]			Prepared: 12/1	14/22 12:13			Analyst: kvm
Hardness	as CaCO3, Total		332	0.219	3.31	mg/l	1	12/15/22	
Method: EPA	A 200.7				Instr: ICP03				
Batch ID: \	W2L1115	Preparation: EPA 200.2			Prepared: 12/1	14/22 12:13			Analyst: kvm
Calcium, 7	Total		88.7	0.0234	0.500	mg/l	1	12/15/22	
Magnesiu	m, Total		26.8	0.0390	0.500	mg/l	1	12/15/22	
Phosphor	us, Dissolved		0.024	0.018	0.050	mg/l	1	12/15/22	
Phosphor	us, Total		0.33	0.018	0.050	mg/l	1	12/15/22	
Method: EPA	A 200.8				Instr: ICPMS06				
Batch ID: \	W2L1122	Preparation: EPA 200.2			Prepared: 12/1	14/22 15:50			Analyst: ty
Aluminum	n, Dissolved		20	4.4	20	ug/l	1	12/15/22	
Aluminum	n, Total		4300	4.4	20	ug/l	1	12/15/22	
Antimony,	, Dissolved		0.53	0.089	0.50	ug/l	1	12/15/22	
Antimony,	, Total		0.88	0.089	0.50	ug/l	1	12/15/22	

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Dylan Cawthorne

Reported:

01/09/2023 10:46

Sample Results

Sample:	F_194B_R-FES-D1-120822-	P				S	ampled: 12/08/2	•
	2L08112-02 (Water)							(Continued
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualific
etals by EPA	A 200 Series Methods (Continu	ed)						
Method: EP/				Instr: ICPMS06				
Batch ID: Arsenic, 1		Preparation: EPA 200.2 5.8	0.074	Prepared: 12/	14/22 15:50 ug/l	1	12/15/22	Analyst: ty
-		3.8 ND	0.062	0.40	ug/l	1	12/15/22	
	,	0.20	0.002	0.10		1	12/15/22	
Beryllium	-,				ug/l	1		
	,		0.042	0.20	ug/l	1	12/15/22	
Cadmium	-,		0.042	0.20	ug/l		12/15/22	
	,	5.55	0.089	0.20	ug/l	1	12/15/22	
Chromiun	,	5.6	0.089	0.20	ug/l	1	12/15/22	
Copper, D		2.1	0.23	0.50	ug/l	1	12/15/22	
Copper, T			0.23	0.50	ug/l	1	12/15/22	
Iron, Diss		45	3.9	20	ug/l	1	12/15/22	
Iron, Tota	1	5600	3.9	20	ug/l	1	12/15/22	
Lead, Dis	solved	0.24	0.083	0.20	ug/l	1	12/15/22	
Lead, Tota	al	11	0.083	0.20	ug/l	1	12/15/22	
Nickel, Di	issolved	0.75	0.16	2.0	ug/l	1	12/15/22	
Nickel, To	otal	5.2	0.16	2.0	ug/l	1	12/15/22	
Selenium	, Dissolved	0.082	0.067	0.40	ug/l	1	12/15/22	
Selenium	, Total	0.13	0.067	0.40	ug/l	1	12/15/22	
Silver, Dis	ssolved	ND	0.030	0.20	ug/l	1	12/15/22	
Silver, Tot	tal	ND	0.13	0.20	ug/l	1	12/15/22	
Thallium,	Dissolved	ND	0.021	0.20	ug/l	1	12/15/22	
Thallium,	Total	ND	0.021	0.20	ug/l	1	12/15/22	
Zinc, Diss	solved	4.4	0.80	10	ug/l	1	12/15/22	
Zinc, Tota	al		1.7	10	ug/l	1	12/15/22	
Method: EPA	Λ 245 1			Instr: HG03				
Batch ID:		Preparation: EPA 245.1		Prepared: 12/	14/22 13:21			Analyst: KVN
Mercury, [ND	0.037	0.050	ug/l	1	12/15/22	7
Mercury,	Total	0.037	0.037	0.050	ug/l	1	12/15/22	
mivolatile (Organics - Low Level by Tandem	a GC/MS/MS						
Method: EPA	A 625.1			Instr: GCMS15				
Batch ID:	W2L1204	Preparation: EPA 3535/SPE		Prepared: 12/	15/22 08:26			Analyst: EF
Acenaphtl	hene	ND	6.0	25	ng/l	1	12/20/22	M-0
Acenapht	thylene	28	5.0	25	ng/l	1	12/20/22	B, M-0
Anthracer	ne	ND	5.5	25	ng/l	1	12/20/22	M-0
Benzo (a)	anthracene	ND	4.6	25	ng/l	1	12/20/22	M-0
Benzo (a)) pyrene	ND	4.8	25	ng/l	1	12/20/22	M-0
Benzo (b)) fluoranthene	ND	8.0	25	ng/l	1	12/20/22	M-C
_08112					-			Page 7 o

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Dylan Cawthorne

Reported:

01/09/2023 10:46

Sample Results

Sample:	F_194B_R-FES-D1-120822-P					S	ampled: 12/08/22	8:04 by Client
	2L08112-02 (Water)							(Continued)
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
Semivolatile (Organics - Low Level by Tandem GO	C/MS/MS (Continued)						
Method: EP	A 625.1			Instr: GCMS15				
Batch ID:	W2L1204	Preparation: EPA 3535/SPE		Prepared: 12/1	15/22 08:26			Analyst: EFC
Benzo (g,	,h,i) perylene		5.0	25	ng/l	1	12/20/22	M-02
Benzo (k)	fluoranthene	ND	6.0	25	ng/l	1	12/20/22	M-02
Chrysene)	ND	7.0	25	ng/l	1	12/20/22	M-02
Dibenzo ((a,h) anthracene	ND	6.0	25	ng/l	1	12/20/22	M-02
Fluoranth	ene	ND	7.5	25	ng/l	1	12/20/22	M-02
Fluorene		6.1	5.5	25	ng/l	1	12/20/22	M-02, J
Indeno (1	,2,3-cd) pyrene	ND	4.8	25	ng/l	1	12/20/22	M-02
Naphthal	ene	54	16	25	ng/l	1	12/20/22	B, M-02
Phenanth	nrene		15	25	ng/l	1	12/20/22	M-02, J
Pyrene -		ND	7.0	25	ng/l	1	12/20/22	M-02
Surrogate(s)								
1,3-Dimet	thyl-2-nitrobenzene	79%	Conc: 396	62-120			12/20/22	
Perylene-	-d12	48%	Conc: 240	36-120			12/20/22	

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123

Project Number: SGVCOG Fire Effects Study

Project Manager: Dylan Cawthorne

Reported:

01/09/2023 10:46

	1	Z		(
			7	

Sample Results

Sample: ARCAD_WA_CON-FES-D1	-120822-P				:	Sampled: 12/08/22	9:15 by Clien
2L08112-03 (Water)							
Analyte	Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
onventional Chemistry/Physical Paramete	rs by APHA/EPA/ASTM Methods						
Method: EPA 350.1			Instr: AA06				
Batch ID: W2L0971	Preparation: _NONE (WETCHEM)		Prepared: 12/13	3/22 11:52			Analyst: ym
Ammonia as N	0.017	0.017	0.10	mg/l	1	12/15/22	
Method: EPA 351.2			Instr: AA06				
Batch ID: W2L1365	Preparation: _NONE (WETCHEM)		Prepared: 12/17	7/22 13:39			Analyst: YM
TKN	1.4	0.065	0.10	mg/l	1	12/19/22	
Method: EPA 353.2			Instr: AA01				
Batch ID: W2L0757	Preparation: _NONE (WETCHEM)		Prepared: 12/09	9/22 17:05			Analyst: ism
Nitrate as N	0.94	0.040	0.20	mg/l	1	12/09/22 17:59	FIL
Nitrite as N	77	42	100	ug/l	1	12/09/22 17:59	FILT,
Method: SM 2540C			Instr: OVEN01				
Batch ID: W2L1062	Preparation: _NONE (WETCHEM)		Prepared: 12/14	4/22 09:45			Analyst: tm
Total Dissolved Solids	390	4.0	10	mg/l	1	12/14/22	
Method: SM 2540D			Instr: OVEN15				
Batch ID: W2L0904	Preparation: _NONE (WETCHEM)		Prepared: 12/13	3/22 09:30			Analyst: me
Total Suspended Solids	23		5	mg/l	1	12/13/22	
exavalent Chromium by IC							
Method: EPA 218.6			Instr: LC13				
Batch ID: W2L1136	Preparation: _NONE (LC)		Prepared: 12/14	4/22 14:30			Analyst: pj
Chromium 6+	4.0	0.0079	0.020	ug/l	1	12/14/22	
Chromium 6+, Dissolved	4.0	0.0079	0.020	ug/l	1	12/14/22	
etals by EPA 200 Series Methods							
Method: Calculation			Instr: [CALC]				
Batch ID: [CALC]	Preparation: [CALC]		Prepared: 12/14	4/22 12:13			Analyst: kvn
Hardness as CaCO3, Total	209	0.219	3.31	mg/l	1	12/15/22	•
Method: EPA 200.7			Instr: ICP03				
Batch ID: W2L1115	Preparation: EPA 200.2		Prepared: 12/14	4/22 12:13			Analyst: kvm
Calcium, Total	57.0	0.0234	0.500	mg/l	1	12/15/22	
Magnesium, Total	16.1	0.0390	0.500	mg/l	1	12/15/22	
Phosphorus, Dissolved	ND	0.018	0.050	mg/l	1	12/15/22	
Phosphorus, Total	0.042	0.018	0.050	mg/l	1	12/15/22	
Method: EPA 200.8			Instr: ICPMS06				
Batch ID: W2L1122	Preparation: EPA 200.2		Prepared: 12/14	4/22 15:50			Analyst: ty
Aluminum, Dissolved	11	4.4	20	ug/l	1	12/15/22	,
Aluminum, Total	26	4.4	20	ug/l	1	12/15/22	
Antimony, Dissolved	0.47	0.089	0.50	ug/l	1	12/15/22	
Antimony, Total	0.47	0.089	0.50	ug/l	1	12/15/22	
		0.074	0.40		1	12/15/22	

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Dylan Cawthorne

Reported:

01/09/2023 10:46

Sample Results

Sample: ARCAD_WA_CON-FE 2L08112-03 (Water)					3	ampled: 12/08/2	(Continued)
Analyte	Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
etals by EPA 200 Series Methods (C	ontinued)						
Method: EPA 200.8			Instr: ICPMS06				
Batch ID: W2L1122	Preparation: EPA 200.2		Prepared: 12/	14/22 15:50			Analyst: tyc
Arsenic, Total	2.2	0.074	0.40	ug/l	1	12/15/22	
Beryllium, Dissolved	ND	0.062	0.10	ug/l	1	12/15/22	
Beryllium, Total	ND	0.029	0.10	ug/l	1	12/15/22	
Cadmium, Dissolved	ND	0.042	0.20	ug/l	1	12/15/22	
Cadmium, Total	ND	0.042	0.20	ug/l	1	12/15/22	
Chromium, Dissolved	3.7	0.089	0.20	ug/l	1	12/15/22	
Chromium, Total	3.7	0.089	0.20	ug/l	1	12/15/22	
Copper, Dissolved	8.0	0.23	0.50	ug/l	1	12/15/22	
Copper, Total	8.6	0.23	0.50	ug/l	1	12/15/22	
Iron, Dissolved		3.9	20	ug/l	1	12/15/22	
Iron, Total		3.9	20	ug/l	1	12/15/22	
Lead, Dissolved	0.18	0.083	0.20	ug/l	1	12/15/22	
Lead, Total	0.20	0.083	0.20	ug/l	1	12/15/22	
Nickel, Dissolved	0.60	0.16	2.0	ug/l	1	12/15/22	
Nickel, Total	0.53	0.16	2.0	ug/l	1	12/15/22	
•		0.067	0.40	ug/l	1	12/15/22	
•		0.067	0.40	ug/l	1	12/15/22	
•	ND	0.030	0.20	ug/l	1	12/15/22	
	ND	0.13	0.20	ug/l	1	12/15/22	
•	ND	0.021	0.20	ug/l	1	12/15/22	
	ND	0.021	0.20	ug/l	1	12/15/22	
,	5.6	0.80	10	ug/l	1	12/15/22	
,	6.9	1.7	10	ug/l	1	12/15/22	
	0.0			ug/i		12/10/22	
Method: EPA 245.1			Instr: HG03				
Mercury, Dissolved	Preparation: EPA 245.1	0.037	Prepared: 12/* 0.050	14/22 13:21 ug/l	1	12/15/22	Analyst: KVN
•	ND	0.037		_	1		
Mercury, Total	ND	0.037	0.050	ug/l	'	12/15/22	
mivolatile Organics - Low Level by 1	Tandem GC/MS/MS						
Method: EPA 625.1			Instr: GCMS15				
Batch ID: W2L1204	Preparation: EPA 3535/SPE		Prepared: 12/			10/00/00	Analyst: EF
	ND	6.0	25	ng/l	1	12/20/22	M-0
	8.5	5.0	25	ng/l	1	12/20/22	M-02,
	ND	5.5	25	ng/l	1	12/20/22	M-0
Benzo (a) anthracene	ND	4.6	25	ng/l	1	12/20/22	M-C
Benzo (a) pyrene	ND	4.8	25	ng/l	1	12/20/22	M-0
Benzo (b) fluoranthene	ND	8.0	25	ng/l	1	12/20/22	M-0
.08112							Page 10 of

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Dylan Cawthorne

Reported:

01/09/2023 10:46

(Continued)

Sample Results

Sample:	ARCAD_WA_CON-FES-D1-1	20822-P					Sa	ampled: 12/08/22	9:15 by Client
	2L08112-03 (Water)								(Continued)
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
emivolatile (Organics - Low Level by Tandem	GC/MS/MS (Continued)							
Method: EP/	A 625.1				Instr: GCMS15				
Batch ID:	W2L1204	Preparation: EPA 3535/SPE			Prepared: 12/1	15/22 08:26			Analyst: EFC
Benzo (g,	h,i) perylene		ND	5.0	25	ng/l	1	12/20/22	M-02
Benzo (k)	fluoranthene		ND	6.0	25	ng/l	1	12/20/22	M-02
Chrysene			ND	7.0	25	ng/l	1	12/20/22	M-02
Dibenzo ((a,h) anthracene		ND	6.0	25	ng/l	1	12/20/22	M-02
Fluoranthe	ene		ND	7.5	25	ng/l	1	12/20/22	M-02
Fluorene			ND	5.5	25	ng/l	1	12/20/22	M-02
Indeno (1	,2,3-cd) pyrene		ND	4.8	25	ng/l	1	12/20/22	M-02
Naphthale	ene		30	16	25	ng/l	1	12/20/22	B, M-02
Phenanth	rene		ND	15	25	ng/l	1	12/20/22	M-02
Pyrene -			ND	7.0	25	ng/l	1	12/20/22	M-02
Surrogate(s)									
1,3-Dimet	thyl-2-nitrobenzene			Conc: 433	62-120			12/20/22	
Perylene-	-d12		67%	Conc: 335	36-120			12/20/22	

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Dylan Cawthorne

Reported:

01/09/2023 10:46

(Continued)

Sa

Sample Results

Sample:	ARCAD_WA_CON-FES-D1-	120822-D					Sampled: 12/08/22	9:15 by Clier
	2L08112-04 (Water)							
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualific
onventional	Chemistry/Physical Parameters	by APHA/EPA/ASTM Methods						
Method: EPA	A 350.1			Instr: AA06				
Batch ID: \	W2L0971	Preparation: _NONE (WETCHEM)		Prepared: 12/1	3/22 11:52			Analyst: ym
Ammonia	as N	0.018	0.017	0.10	mg/l	1	12/15/22	
Method: EPA	A 351.2			Instr: AA06				
Batch ID: \	W2L1365	Preparation: _NONE (WETCHEM)		Prepared: 12/1	7/22 13:39			Analyst: YM
TKN		1.8	0.065	0.10	mg/l	1	12/19/22	
Method: EPA	A 353.2			Instr: AA01				
Batch ID: \	W2L0757	Preparation: _NONE (WETCHEM)		Prepared: 12/0	9/22 17:05			Analyst: isn
Nitrate as	N	1.1	0.040	0.20	mg/l	1	12/09/22 18:00	FIL
Nitrite as I	N	82	42	100	ug/l	1	12/09/22 18:00	FILT,
Method: SM	2540C			Instr: OVEN01				
Batch ID: \		Preparation: _NONE (WETCHEM)		Prepared: 12/1	4/22 09:45			Analyst: tmp
	olved Solids	400	4.0	10	mg/l	1	12/14/22	, , , , ,
Method: SM	2540D			Instr: OVEN15				
Batch ID: \		Preparation: _NONE (WETCHEM)		Prepared: 12/1	3/22 09:30			Analyst: me:
	pended Solids	2		5	mg/l	1	12/13/22	7 maryou me
exavalent Ch	nromium by IC							
Method: EPA	•			Instr: LC13				
Batch ID: \	W2L1136	Preparation: _NONE (LC)		Prepared: 12/1	4/22 14:30			Analyst: pj
Chromium		4.0	0.0079	0.020	ug/l	1	12/14/22	. 3 [3
Chromium	1 6+, Dissolved	4.0	0.0079	0.020	ug/l	1	12/14/22	
letals by EPA	200 Series Methods							
Method: Cal				Instr: [CALC]				
Batch ID: [Preparation: [CALC]		Prepared: 12/1	4/22 12:13			Analyst: kvn
	as CaCO3, Total	206	0.219	3.31	mg/l	1	12/15/22	,
Method: EPA	A 200.7			Instr: ICP03				
Batch ID: \		Preparation: EPA 200.2		Prepared: 12/1	4/22 12:13			Analyst: kvn
Calcium, 1		56.2	0.0234	0.500	mg/l	1	12/15/22	•
Magnesiu	m, Total		0.0390	0.500	mg/l	1	12/15/22	
Phosphoru	us, Dissolved	ND	0.018	0.050	mg/l	1	12/15/22	
Phosphor		0.089	0.018	0.050	mg/l	1	12/15/22	
Method: EPA	V 200 8			Instr: ICPMS06				
Batch ID: \		Preparation: EPA 200.2		Prepared: 12/1	4/ 22 15·50			Analyst: ty
	n, Dissolved	34	4.4	20	4/22 13.30 ug/l	1	12/15/22	Analyst. ty
Aluminum		250	4.4	20	ug/l	1	12/15/22	
	,		0.089	0.50	ug/l	1	12/15/22	
Antimony,	, 2.000.100	0.48	0.089	0.50	ug/l	1	12/15/22	
Arsenic, D	,		0.074	0.40	-	1	12/15/22	
AISCIIIC, L	/13301VCU	2.1	0.074	0.40	ug/l	1	12/13/22	

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123

Project Number: SGVCOG Fire Effects Study

Project Manager: Dylan Cawthorne

Reported:

01/09/2023 10:46

Sample Results

Sample:	ARCAD_WA_CON-FES-D1-	120822-D					Sa	ampled: 12/08/2	22 9:15 by Client
Analuta	2L08112-04 (Water)		Result	MDL	MRL	Units	Dil	Analyzed	(Continued
Analyte	A 200 Series Methods (Continue	54)	Kesuit	MDL	IVIKL	Units	DII	Analyzed	Qualifie
Method: EP		,			Instr: ICPMS06				
Batch ID:		Preparation: EPA 200.2			Prepared: 12/				Analyst: tyc
Arsenic,			2.3	0.074	0.40	ug/l	1	12/15/22	
Beryllium,	, Dissolved		ND	0.062	0.10	ug/l	1	12/15/22	
Beryllium,	, Total		ND	0.029	0.10	ug/l	1	12/15/22	
Cadmium	, Dissolved		ND	0.042	0.20	ug/l	1	12/15/22	
Cadmium	, Total		ND	0.042	0.20	ug/l	1	12/15/22	
Chromiur	m, Dissolved		3.6	0.089	0.20	ug/l	1	12/15/22	
Chromiur	m, Total		4.2	0.089	0.20	ug/l	1	12/15/22	
Copper, E	Dissolved		7.6	0.23	0.50	ug/l	1	12/15/22	
Copper, T	Fotal		9.9	0.23	0.50	ug/l	1	12/15/22	
Iron, Diss	solved		- 19	3.9	20	ug/l	1	12/15/22	
Iron, Tota	1		310	3.9	20	ug/l	1	12/15/22	
Lead, Dis	solved		0.18	0.083	0.20	ug/l	1	12/15/22	
Lead, Tot	al		1.2	0.083	0.20	ug/l	1	12/15/22	
Nickel, Di	issolved		0.50	0.16	2.0	ug/l	1	12/15/22	
Nickel, To	otal		0.86	0.16	2.0	ug/l	1	12/15/22	
Selenium	, Dissolved		0.18	0.067	0.40	ug/l	1	12/15/22	
Selenium	, Total		0.19	0.067	0.40	ug/l	1	12/15/22	
Silver, Dis	ssolved		ND	0.030	0.20	ug/l	1	12/15/22	
Silver, Tot	tal		ND ND	0.13	0.20	ug/l	1	12/15/22	
Thallium,	Dissolved		ND	0.021	0.20	ug/l	1	12/15/22	
Thallium,	Total		ND.	0.021	0.20	ug/l	1	12/15/22	
Zinc, Diss	solved		3.1	0.80	10	ug/l	1	12/15/22	
Zinc, Tota	al		- 14	1.7	10	ug/l	1	12/15/22	
Method: EPA	A 245 1				Instr: HG03				
Batch ID:		Preparation: EPA 245.1			Prepared: 12/	14/22 13:21			Analyst: KVN
Mercury, I		•	ND	0.037	0.050	ug/l	1	12/15/22	
Mercury,	Total		ND	0.037	0.050	ug/l	1	12/15/22	
mivolatile (Organics - Low Level by Tandem	GC/MS/MS							
Method: EPA	A 625.1				Instr: GCMS15				
Batch ID:	W2L1204	Preparation: EPA 3535/SPE			Prepared: 12/	15/22 08:26			Analyst: EF
Acenapht	hene		ND	6.0	25	ng/l	1	12/20/22	M-C
Acenapht	hylene		ND	5.0	25	ng/l	1	12/20/22	M-C
Anthracer	ne		ND	5.5	25	ng/l	1	12/20/22	M-C
Benzo (a)	anthracene		ND	4.6	25	ng/l	1	12/20/22	M-C
Benzo (a)) pyrene		ND	4.8	25	ng/l	1	12/20/22	M-0
Benzo (b)) fluoranthene		ND ND	8.0	25	ng/l	1	12/20/22	M-0
.08112									Page 13 of

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123

Project Number: SGVCOG Fire Effects Study

Project Manager: Dylan Cawthorne

Reported:

(Continued)

01/09/2023 10:46

Sample Results

Sample:	ARCAD_WA_CON-FES-D1-12	0822-D				S	ampled: 12/08/2	2 9:15 by Client
	2L08112-04 (Water)							(Continued)
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
Semivolatile C	Organics - Low Level by Tandem G	C/MS/MS (Continued)						
Method: EPA	A 625.1			Instr: GCMS15				
Batch ID: \	W2L1204	Preparation: EPA 3535/SPE		Prepared: 12/1	5/22 08:26			Analyst: EFC
Benzo (g,h	n,i) perylene		5.0	25	ng/l	1	12/20/22	M-02
Benzo (k)	fluoranthene	ND	6.0	25	ng/l	1	12/20/22	M-02
Chrysene		ND	7.0	25	ng/l	1	12/20/22	M-02
Dibenzo (a	a,h) anthracene	ND	6.0	25	ng/l	1	12/20/22	M-02
Fluoranthe	ene	ND	7.5	25	ng/l	1	12/20/22	M-02
Fluorene		ND	5.5	25	ng/l	1	12/20/22	M-02
Indeno (1,	2,3-cd) pyrene	ND	4.8	25	ng/l	1	12/20/22	M-02
Naphthale	ene	21	16	25	ng/l	1	12/20/22	M-02, J
Phenanthr	rene	ND	15	25	ng/l	1	12/20/22	M-02
Pyrene -		ND	7.0	25	ng/l	1	12/20/22	M-02
Surrogate(s)								
1,3-Dimetl	hyl-2-nitrobenzene	64%	Conc: 319	62-120			12/20/22	
Perylene-c	d12	57%	Conc: 283	36-120			12/20/22	

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Reported:

01/09/2023 10:46

Sampled: 12/08/22 7:15 by Client

San Diego, CA 92123

Project Manager: Dylan Cawthorne

Sa	Imple Results Enthalpy Orange		
Sample:	F_193_R-FES-D1-120822-P 2L08112-01 (Water)		

Units Dil Analyzed Qualifier Analyte Result MDL MRL SM 10200-H Method: Chlorophyll **Batch ID:** 303403 Analyst: ATP Prepared: 12/08/22 00:00 1.0 12/12/22 mg/M3 Chlorophyll a

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A

Project Number: SGVCOG Fire Effects Study

Reported:

01/09/2023 10:46

San Diego, CA 92123 Sample Results Enthalpy Orange

Chlorophyll a

Project Manager: Dylan Cawthorne

(Continued)

F_194B_R-FES-D1-120822-P Sampled: 12/08/22 8:04 by Client Sample: 2L08112-02 (Water) MDL MRL Units Dil Analyzed Qualifier Analyte Result SM 10200-H **Batch ID:** 303403 Analyst: ATP Method: Chlorophyll Prepared: 12/08/22 00:00 1.0 12/12/22 mg/M3

12/12/22

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123

Chlorophyll a

Project Number: SGVCOG Fire Effects Study

1.0

mg/M3

Reported:

01/09/2023 10:46

Sample Results Enthalpy Orange

(Continued)

Sample:	ARCAD_WA_CON-FES-D1-120822-P 2L08112-03 (Water)					Sa	mpled: 12/08/22	9:15 by Client
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
SM 10200-H								
Method: Chl	orophyll	Ratch ID: 303403		Prenared: 12/	08/22 00·00			Analyst: ATP

Project Manager: Dylan Cawthorne

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

MDL

MRL

Reported:

01/09/2023 10:46

Sample Results Enthalpy Orange

(Continued)

Qualifier

Sampled: 12/08/22 9:15 by Client

Analyzed

Sample: ARCAD_WA_CON-FES-D1-120822-D

2L08112-04 (Water)

Dil

Units

Analyte SM 10200-H

 Method: Chlorophyll
 Batch ID: 303403
 Prepared: 12/08/22 00:00
 Analyst: ATP

 Chlorophyll a
 12
 1.0
 mg/M3
 1
 12/12/22

Result

Project Manager: Dylan Cawthorne

2L08112 Page 18 of 31

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123

Project Number: SGVCOG Fire Effects Study

Project Manager: Dylan Cawthorne

Reported:

01/09/2023 10:46

Quality Control Results

Conventional Chemistry/Physical Parameters	by APHA/EPA/AST	M Methods	5								
					Spike	Source		%REC		RPD	
Analyte atch: W2L0757 - EPA 353.2	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
Blank (W2L0757-BLK1) Nitrate as N	ND	0.040	0.20	mg/l	Prepared & A	nalyzed: 12/	09/22				
Nitrite as N		42	100	ug/l							
Nulle as IV	·····ND	42	100	ug/i							
LCS (W2L0757-BS1)					Prepared & A	nalyzed: 12/					
Nitrate as N		0.040	0.20	mg/l	1.00		96	90-110			
Nitrite as N	1010	42	100	ug/l	1000		101	90-110			
Duplicate (W2L0757-DUP1)	Source: 2	L08141-01			Prepared & A	nalyzed: 12/	09/22				
Nitrate as N	11.4	0.40	2.0	mg/l		11.3			1	20	
Nitrite as N	58.6	42	100	ug/l		70.1			18	20	
Matrix Spike (W2L0757-MS1)	Source: 2	L08141-05			Prepared & A	nalyzed: 12/	09/22				
Nitrate as N		0.040	0.20	mg/l	2.00	9.69	125	90-110			MS-0
Nitrite as N	1020	42	100	ug/l	1000	ND	102	90-110			
Matrix Smike (MOLOTET MS2)	Sauraa, 31	00141 05		Duo	marradi. 12/00/2	2 Analyzada	12/10/2				
Matrix Spike (W2L0757-MS2) Nitrate as N		0.16	0.80	mg/l	epared: 12/09/2 8.00	9.69	99	90-110			
				, i							
Matrix Spike Dup (W2L0757-MSD1) Nitrate as N	Source: 21	0.040	0.20	mg/l	Prepared & A 2.00	9.69	09/22 120	90-110	0.8	20	MS-0
Nitrite as N		42	100	ug/l	1000	ND	103	90-110	1	20	ilio o
	.000			~g/.	.000			00 110	•		
Matrix Spike Dup (W2L0757-MSD2)		L08141-05	0.00		pared: 12/09/2	-			0.0	20	
Nitrate as N	0.71	0.16	0.80	mg/l	8.00	9.69	99	90-110	0.2	20	
atch: W2L0904 - SM 2540D											
Blank (W2L0904-BLK1)					Prepared & A	nalyzed: 12/	13/22				
Total Suspended Solids	ND		5	mg/l							
LCS (W2L0904-BS1)					Prepared & A	nalyzed: 12/	13/22				
Total Suspended Solids	69.7		5	mg/l	63.7	naiyzea. 12,	109	90-110			
Duplicate (W2L0904-DUP1) Total Suspended Solids	Source: 2 l	L08098-01	5	mg/l	Prepared & A	nalyzed: 12/ 109	13/22		2	10	
Total Gusponaed Golius	107		J	1119/1		100				10	
Duplicate (W2L0904-DUP2)	Source: 2	L08112-01	_		Prepared & A	•	13/22		0	40	
Total Suspended Solids	26.4		5	mg/l		26.4			0	10	
atch: W2L0971 - EPA 350.1											
Blank (W2L0971-BLK1)				Pre	pared: 12/13/2	2 Analyzed:	12/15/22	2			
Ammonia as N	ND	0.017	0.10	mg/l							
Blank (W2L0971-BLK2)				Pre	pared: 12/13/2	2 Analyzed:	12/15/22	,			
Ammonia as N	ND	0.017	0.10	mg/l	.pu. cu. 12, 10, 2		, ,	-			
LCC (MOLOOZ4, DC4)				ъ			42/45/2				
LCS (W2L0971-BS1) Ammonia as N	0.256	0.017	0.10	mg/l	epared: 12/13/2 0.250	z Analyzed:	102	90-110			
	5.250		20	, and the second							
LCS (W2L0971-BS2)	0.050	0.047	0.40		pared: 12/13/2	2 Analyzed:					
Ammonia as N	0.258	0.017	0.10	mg/l	0.250		103	90-110			
Matrix Spike (W2L0971-MS1)		L06166-02		Pre	pared: 12/13/2	-					
Ammonia as N	1.77	0.017	0.10	mg/l	0.250	1.54	92	90-110			

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123

Project Number: SGVCOG Fire Effects Study

Project Manager: Dylan Cawthorne

Reported:

01/09/2023 10:46

2L08112

Quality Control Results

(Continued)

Page 20 of 31

					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
atch: W2L0971 - EPA 350.1 (Continued)											
Matrix Spike (W2L0971-MS1)	Source: 21	.06166-02		Pre	pared: 12/13/2	2 Analyzed:	12/15/22	!			
Matrix Spike (W2L0971-MS2) Ammonia as N	Source: 21	.08041-01 0.017	0.10	mg/l	pared: 12/13/2 0.250	2 Analyzed: 0.203		90-110			
Matrix Spike Dup (W2L0971-MSD1)	Source: 2L	.06166-02		Pre	pared: 12/13/2	2 Analyzed:	12/15/22	!			
Ammonia as N	1.77	0.017	0.10	mg/l	0.250	1.54	93	90-110	0.1	15	
Matrix Spike Dup (W2L0971-MSD2)	Source: 2L	.08041-01		Pre	pared: 12/13/2	2 Analyzed:	12/15/22	!			
Ammonia as N	0.464	0.017	0.10	mg/l	0.250	0.203	105	90-110	2	15	
atch: W2L1062 - SM 2540C											
Blank (W2L1062-BLK1)					Prepared & A	nalyzed: 12/	14/22				
Total Dissolved Solids	6.00	4.0	10	mg/l							
LCS (W2L1062-BS1)					Prepared & A	nalyzed: 12/	14/22				
Total Dissolved Solids	844	4.0	10	mg/l	824	•	102	97-103			
Duplicate (W2L1062-DUP1)	Source: 21	.08111-07			Prepared & A	nalyzed: 12/	14/22				
Total Dissolved Solids	4120	4.0	10	mg/l	•	4100			0.7	10	
Duplicate (W2L1062-DUP2)	Source: 21	.08111-09			Prepared & A	nalyzed: 12/	14/22				
Total Dissolved Solids	4140	4.0	10	mg/l	•	4120			0.6	10	
atch: W2L1245 - EPA 351.2											
Blank (W2L1245-BLK1)				Pre	pared: 12/15/2	2 Analyzed:	12/19/22	:			
TKN	· ND	0.065	0.10	mg/l		,					
Blank (W2L1245-BLK2)				Pre	pared: 12/15/2	2 Analyzed:	12/19/22	!			
TKN	ND	0.065	0.10	mg/l		, , , , , , , ,					
LCS (W2L1245-BS1)				Pre	pared: 12/15/2	2 Analyzed:	12/19/22	!			
TKN	1.01	0.065	0.10	mg/l	1.00		101	90-110			
LCS (W2L1245-BS2)				Pre	pared: 12/15/2	2 Analyzed:	12/19/22	!			
TKN	1.02	0.065	0.10	mg/l	1.00	, , , , , , , ,		90-110			
Matrix Spike (W2L1245-MS1)	Source: 21	.07066-04		Pre	pared: 12/15/2	2 Analyzed:	12/19/22	!			
TKN			0.10	mg/l	1.00	0.0917	103	90-110			
Matrix Spike (W2L1245-MS2)	Source: 2L	.07066-05		Pre	pared: 12/15/2	2 Analyzed:	12/19/22	!			
TKN		0.065	0.10	mg/l	1.00	ND	99	90-110			
Matrix Spike Dup (W2L1245-MSD1)	Source: 2L	07066-04		Pre	pared: 12/15/2	2 Analyzed:	12/19/22	!			
TKN	1.09		0.10	mg/l	1.00	0.0917	99	90-110	3	10	
Matrix Spike Dup (W2L1245-MSD2)	Source: 21	.07066-05		Pre	pared: 12/15/2	2 Analyzed	12/19/22	•			
TKN		0.065	0.10	mg/l	1.00	ND	102	90-110	2	10	
atch: W2L1365 - EPA 351.2											
				D	narod: 12/17/1	2 Arabaal	12/10/22				
Blank (W2L1365-BLK1) TKN	ND	0.065	0.10	mg/l	pared: 12/17/2	∠ Analyzed:	12/19/22				
				-	1 4545		40.440.55				
LCS (W2L1365-BS1) TKN	0.994	0.065	0.10	Pre _l mg/l	pared: 12/17/2 1.00	2 Analyzed:	12/19/22 99	90-110			

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A

Chromium 6+, Dissolved

Chromium 6+, Dissolved

Chromium 6+

Matrix Spike Dup (W2L1136-MSD2)

Project Number: SGVCOG Fire Effects Study

Project Manager: Dylan Cawthorne

Reported:

01/09/2023 10:46

San Diego, CA 92123

Quality Control Results

(Continued)

Conventional Chemistry/Physical Parameters by APHA	'EPA/AST	M Methods	(Continue	d)							
					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
Batch: W2L1365 - EPA 351.2 (Continued)											
		L15084-01		Pre	pared: 12/17/2	•					
TKN	1.24	0.065	0.10	mg/l	1.00	0.246	99	90-110			
		L15084-01		Pre	pared: 12/17/2	•					
TKN	1.29	0.065	0.10	mg/l	1.00	0.246	104	90-110	4	10	
Quality Control Results										(Co	ontinued
Hexavalent Chromium by IC											
					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
Batch: W2L1136 - EPA 218.6											
Blank (W2L1136-BLK1)					Prepared & A	nalyzed: 12/1	14/22				
Chromium 6+	ND	0.0079	0.020	ug/l							
Chromium 6+, Dissolved	ND	0.0079	0.020	ug/l							
LCS (W2L1136-BS1)					Prepared & A	nalyzed: 12/1	14/22				
Chromium 6+	4.82	0.0079	0.020	ug/l	5.00		96	90-110			
Chromium 6+, Dissolved	4.82	0.0079	0.020	ug/l	5.00		96	90-110			
		L08112-01			Prepared & A	nalyzed: 12/1	14/22				
Chromium 6+	- 5.10	0.0079	0.020	ug/l	5.00	0.429	93	88-112			
Chromium 6+, Dissolved	- 5.10	0.0079	0.020	ug/l	5.00	0.478	92	88-112			
Matrix Spike (W2L1136-MS2)	Source: 2	L08112-02			Prepared & A	nalyzed: 12/1	14/22				
Chromium 6+	4.99	0.0079	0.020	ug/l	5.00	0.317	93	88-112			
Chromium 6+, Dissolved	4.99	0.0079	0.020	ug/l	5.00	0.408	92	88-112			
Matrix Spike Dup (W2L1136-MSD1)	Source: 2	L08112-01			Prepared & A	nalyzed: 12/1	14/22				
Chromium 6+	- 5.15	0.0079	0.020	ug/l	5.00	0.429	94	88-112	1	10	

0.0079

0.0079

0.0079

Source: 2L08112-02

0.020

0.020

0.020

ug/l

ug/l

ug/l

5.00

5.00

5.00

0.478

0.317

0.408

Prepared & Analyzed: 12/14/22

93

88-112

88-112

88-112

1

10

10

10

5.15

5.04

5.04

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Dylan Cawthorne

Reported:

01/09/2023 10:46

2L08112

Quality Control Results

(Continued)

Page 22 of 31

Metals by EPA 200 Series Methods											
					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
atch: W2L1115 - EPA 200.7											
Blank (W2L1115-BLK1)				Pre	pared: 12/14/2	2 Analyzed:	12/15/2	2			
Calcium, Total		0.0234	0.500	mg/l							
Magnesium, Total		0.0390	0.500	mg/l							
Phosphorus, Dissolved	ND	0.018	0.050	mg/l							
Phosphorus, Total	ND	0.018	0.050	mg/l							
LCS (W2L1115-BS1)				Pre	pared: 12/14/2	2 Analyzed:	12/15/2	2			
Calcium, Total		0.0234	0.500	mg/l	50.2		91	85-115			
Magnesium, Total		0.0390	0.500	mg/l	50.2		91	85-115			
Phosphorus, Dissolved		0.018	0.050	mg/l	2.00		97	85-115			
Phosphorus, Total	1.95	0.018	0.050	mg/l	2.00		97	85-115			
Matrix Spike (W2L1115-MS1)	Source: 2	2K16002-01		Pre	pared: 12/14/2	2 Analyzed:	12/15/2	2			
Calcium, Total	102	0.0234	0.500	mg/l	50.2	58.6	87	70-130			
Magnesium, Total		0.0390	0.500	mg/l	50.2	30.9	89	70-130			
Phosphorus, Dissolved		0.018	0.050	mg/l	2.00	1.28	98	70-130			
Phosphorus, Total	3.25	0.018	0.050	mg/l	2.00	1.28	98	70-130			
• •		2L08103-01		Pre	pared: 12/14/2	2 Analyzed:	12/15/2	2			
Calcium, Total	116	0.0234	0.500	mg/l	50.2	71.3	89	70-130			
Magnesium, Total		0.0390	0.500	mg/l	50.2	27.4	92	70-130			
Phosphorus, Dissolved	- 17.3	0.018	0.050	mg/l	2.00	15.1	113	70-130			
Phosphorus, Total	- 17.3	0.018	0.050	mg/l	2.00	15.1	113	70-130			
Matrix Spike Dup (W2L1115-MSD1)	Source: 2	2K16002-01		Pre	pared: 12/14/2	2 Analyzed:	12/15/2	2			
Calcium, Total	103	0.0234	0.500	mg/l	50.2	58.6	88	70-130	0.6	30	
Magnesium, Total	76.4	0.0390	0.500	mg/l	50.2	30.9	91	70-130	8.0	30	
Phosphorus, Dissolved	3.27	0.018	0.050	mg/l	2.00	1.28	99	70-130	0.6	30	
Phosphorus, Total	3.27	0.018	0.050	mg/l	2.00	1.28	99	70-130	0.6	30	
		2L08103-01		Pre	pared: 12/14/2	2 Analyzed:	12/15/2	2			
Calcium, Total	114	0.0234	0.500	mg/l	50.2	71.3	85	70-130	2	30	
Magnesium, Total	72.5	0.0390	0.500	mg/l	50.2	27.4	90	70-130	2	30	
Phosphorus, Dissolved	- 17.0	0.018	0.050	mg/l	2.00	15.1	96	70-130	2	30	
Phosphorus, Total	- 17.0	0.018	0.050	mg/l	2.00	15.1	96	70-130	2	30	
atch: W2L1122 - EPA 200.8											
Blank (W2L1122-BLK1)				Pre	pared: 12/14/2	2 Analyzed:	12/15/2	2			
Aluminum, Dissolved	ND	4.4	20	ug/l		-					
Aluminum, Total	ND	4.4	20	ug/l							
Antimony, Dissolved	ND	0.089	0.50	ug/l							
Antimony, Total	ND	0.089	0.50	ug/l							
Arsenic, Dissolved	ND	0.074	0.40	ug/l							
Arsenic, Total	ND	0.074	0.40	ug/l							
Beryllium, Dissolved	ND	0.062	0.10	ug/l							

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Dylan Cawthorne

Reported:

01/09/2023 10:46

Quality Control Results

Metals by EPA 200 Series Methods (Continued)											
					Spike	Source	0/ PEC	%REC		RPD	
Analyte tch: W2L1122 - EPA 200.8 (Continued)	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualif
				D	d- 12/14/2		12/15/22				
llank (W2L1122-BLK1) Beryllium, Total	ND	0.029	0.10	ug/l	pared: 12/14/2	2 Analyzea:	12/15/22	4			
Cadmium, Dissolved	ND	0.042	0.20	ug/l							
Cadmium, Total	ND	0.042	0.20	ug/l							
Chromium, Dissolved	ND	0.089	0.20	ug/l							
Chromium, Total	ND	0.089	0.20	ug/l							
Copper, Dissolved	ND	0.23	0.50	ug/l							
Copper, Total	ND	0.23	0.50	ug/l							
Iron, Dissolved	ND	3.9	20	ug/l							
Iron, Total	ND	3.9	20	ug/l							
Lead, Dissolved	ND	0.083	0.20	ug/l							
Lead, Total	ND	0.083	0.20	ug/l							
Nickel, Dissolved	ND	0.16	2.0	ug/l							
Nickel, Total	ND	0.16	2.0	ug/l							
Selenium, Dissolved	ND	0.067	0.40	ug/l							
Selenium, Total	ND	0.067	0.40	ug/l							
Silver, Dissolved	ND	0.030	0.20	ug/l							
Silver, Total	ND	0.13	0.20	ug/l							
Thallium, Dissolved	ND	0.021	0.20	ug/l							
Thallium, Total	ND	0.021	0.20	ug/l							
Zinc, Dissolved	ND	0.80	10	ug/l							
Zinc, Total	ND	1.7	10	ug/l							
CC (MOL1122 DC1)				- D	d- 12/14/2	2 Analonad	12/15/22				
CS (W2L1122-BS1) Aluminum, Dissolved	51.4	4.4	20	ug/l	pared: 12/14/2 50.0	2 Analyzea:	103	85-115			
Aluminum, Total	51.4	4.4	20	ug/l	50.0		103	85-115			
Antimony, Dissolved	50.2	0.089	0.50	ug/l	50.0		100	85-115			
Antimony, Total	50.2	0.089	0.50	ug/l	50.0		100	85-115			
Arsenic, Dissolved	52.0	0.074	0.40	ug/l	50.0		104	85-115			
Arsenic, Total	52.0	0.074	0.40	ug/l	50.0		104	85-115			
Beryllium, Dissolved	47.1	0.062	0.10	ug/l	50.0		94	85-115			
Beryllium, Total	47.1	0.029	0.10	ug/l	50.0		94	85-115			
Cadmium, Dissolved	49.4	0.042	0.20	ug/l	50.0		99	85-115			
Cadmium, Total	49.4	0.042	0.20	ug/l	50.0		99	85-115			
Chromium, Dissolved	52.2	0.089	0.20	ug/l	50.0		104	85-115			
Chromium, Total	52.2	0.089	0.20	ug/l	50.0		104	85-115			
Copper, Dissolved	49.6	0.23	0.50	ug/l	50.0		99	85-115			
- 11 /	49.6	0.23	0.50	ug/l	50.0		99	85-115			
Iron, Dissolved		3.9	20	ug/l	1050		107	85-115			
Iron, Total		3.9	20	ug/l	1050		107	85-115			
Lead, Dissolved	50.5	0.083	0.20	ug/l	50.0		101	85-115			
08112	50.0	0.000	0.20	49/1	00.0		.01	00 110			

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Dylan Cawthorne

Reported:

01/09/2023 10:46

Quality Control Results

Metals by EPA 200 Series Methods (Continued)											
					Spike	Source	0/ DEC	%REC		RPD	
Analyte atch: W2L1122 - EPA 200.8 (Continued)	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifi
LCS (W2L1122-BS1)				Dro	pared: 12/14/2	22 Analyzed:	12/15/2	,			
Lead, Total	- 50.5	0.083	0.20	ug/l	50.0	LL Analyzeu.	101	85-115			
Nickel, Dissolved	50.2	0.16	2.0	ug/l	50.0		100	85-115			
Nickel, Total	50.2	0.16	2.0	ug/l	50.0		100	85-115			
Selenium, Dissolved	49.9	0.067	0.40	ug/l	50.0		100	85-115			
Selenium, Total	49.9	0.067	0.40	ug/l	50.0		100	85-115			
Silver, Dissolved	47.8	0.030	0.20	ug/l	50.0		96	85-115			
Silver, Total	47.8	0.13	0.20	ug/l	50.0		96	85-115			
Thallium, Dissolved	49.7	0.021	0.20	ug/l	50.0		99	85-115			
Thallium, Total	49.7	0.021	0.20	ug/l	50.0		99	85-115			
Zinc, Dissolved	50.2	0.80	10	ug/l	50.0		100	85-115			
Zinc, Total	50.2	1.7	10	ug/l	50.0		100	85-115			
Matrix Spike (W2L1122-MS1)	Source: 2	K16002-04		Dro	pared: 12/14/2	22 Analyzod:	12/15/2)			
Aluminum, Dissolved		4.4	20	ug/l	50.0	4.73	96	70-130			
Aluminum, Total	52.8	4.4	20	ug/l	50.0	4.73	96	70-130			
Antimony, Dissolved	- 51.6	0.089	0.50	ug/l	50.0	0.522	102	70-130			
Antimony, Total	- 51.6	0.089	0.50	ug/l	50.0	0.522	102	70-130			
Arsenic, Dissolved	- 53.4	0.074	0.40	ug/l	50.0	0.978	105	70-130			
Arsenic, Total	53.4	0.074	0.40	ug/l	50.0	0.978	105	70-130			
Beryllium, Dissolved	49.1	0.062	0.10	ug/l	50.0	ND	98	70-130			
Beryllium, Total	49.1	0.029	0.10	ug/l	50.0	ND	98	70-130			
Cadmium, Dissolved	48.9	0.042	0.20	ug/l	50.0	ND	98	70-130			
Cadmium, Total	48.9	0.042	0.20	ug/l	50.0	ND	98	70-130			
Chromium, Dissolved	- 51.1	0.089	0.20	ug/l	50.0	0.379	101	70-130			
Chromium, Total	- 51.1	0.089	0.20	ug/l	50.0	0.379	101	70-130			
Copper, Dissolved	- 52.8	0.23	0.50	ug/l	50.0	3.17	99	70-130			
Copper, Total	- 52.8	0.23	0.50	ug/l	50.0	3.17	99	70-130			
Iron, Dissolved	- 1100	3.9	20	ug/l	1050	18.1	103	70-130			
Iron, Total		3.9	20	ug/l	1050	18.1	103	70-130			
Lead, Dissolved	- 50.0	0.083	0.20	ug/l	50.0	ND	100	70-130			
Lead, Total	- 50.0	0.083	0.20	ug/l	50.0	ND	100	70-130			
Nickel, Dissolved		0.16	2.0	ug/l	50.0	1.57	100	70-130			
Nickel, Total		0.16	2.0	ug/l	50.0	1.57	100	70-130			
Selenium, Dissolved		0.067	0.40	ug/l	50.0	0.184	96	70-130			
Selenium, Total		0.067	0.40	ug/l	50.0	0.184	96	70-130			
Silver, Dissolved	47.0	0.030	0.20	ug/l	50.0	ND	94	70-130			
Silver, Total		0.13	0.20	ug/l	50.0	ND	94	70-130			
Thallium, Dissolved		0.021	0.20	ug/l	50.0	ND	99	70-130			
Thallium, Total		0.021	0.20	ug/l	50.0	ND	99	70-130			
Zinc, Dissolved		0.80	10	ug/l	50.0	29.5	96	70-130			
L08112		0.00		~a,,	55.0	_0.0	30				

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Dylan Cawthorne

Reported:

01/09/2023 10:46

Quality Control Results

Metals by EPA 200 Series Methods (Continued)											
					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
atch: W2L1122 - EPA 200.8 (Continued)											
Matrix Spike (W2L1122-MS1) Zinc, Total		K16002-04	10	Pre _l ug/l	pared: 12/14/3 50.0	22 Analyzed: 29.5	12/15/2 2	2 70-130			
,		1.7	10	ug/i	00.0	25.0	30	70-100			
Matrix Spike (W2L1122-MS2) Aluminum, Dissolved		L08014-02 4.4	20	Pre _l ug/l	pared: 12/14/3 50.0	22 Analyzed: ND	12/15/2 2	2 70-130			
Aluminum, Total		4.4	20	ug/l	50.0	ND	99	70-130			
Antimony, Dissolved		0.089	0.50	ug/l	50.0	33.6	102	70-130			
Antimony, Total	•	0.089	0.50	ug/l	50.0	33.6	102	70-130			
Arsenic, Dissolved	*	0.003	0.40	ug/l	50.0	3.78	102	70-130			
Arsenic, Total		0.074	0.40	ug/l	50.0	3.78	102	70-130			
Beryllium, Dissolved		0.062	0.10	ug/l	50.0	ND	99	70-130			
Beryllium, Total		0.002	0.10	ug/l	50.0	ND	99	70-130			
Cadmium, Dissolved		0.029	0.10	_	50.0	0.0583	95	70-130			
- ,				ug/l							
,		0.042	0.20	ug/l	50.0	0.0583	95	70-130			
- ,		0.089	0.20	ug/l	50.0	6.86	98	70-130			
-···-····, ···		0.089	0.20	ug/l	50.0	6.86	98	70-130			
Copper, Dissolved		0.23	0.50	ug/l	50.0	15.6	93	70-130			
Copper, Total		0.23	0.50	ug/l	50.0	15.6	93	70-130			
Iron, Dissolved		3.9	20	ug/l	1050	135	100	70-130			
Iron, Total		3.9	20	ug/l	1050	135	100	70-130			
Lead, Dissolved		0.083	0.20	ug/l	50.0	ND	103	70-130			
Lead, Total		0.083	0.20	ug/l	50.0	ND	103	70-130			
Nickel, Dissolved		0.16	2.0	ug/l	50.0	37.0	92	70-130			
Nickel, Total		0.16	2.0	ug/l	50.0	37.0	92	70-130			
Selenium, Dissolved		0.067	0.40	ug/l	50.0	0.412	95	70-130			
Selenium, Total	47.9	0.067	0.40	ug/l	50.0	0.412	95	70-130			
Silver, Dissolved		0.030	0.20	ug/l	50.0	ND	91	70-130			
Silver, Total	45.7	0.13	0.20	ug/l	50.0	ND	91	70-130			
Thallium, Dissolved	51.3	0.021	0.20	ug/l	50.0	ND	103	70-130			
Thallium, Total	51.3	0.021	0.20	ug/l	50.0	ND	103	70-130			
Zinc, Dissolved		0.80	10	ug/l	50.0	40.2	88	70-130			
Zinc, Total		1.7	10	ug/l	50.0	40.2	88	70-130			
Matrix Spike Dup (W2L1122-MSD1)	Source: 2	K16002-04		Pre	pared: 12/14/	22 Analyzed:	12/15/22	2			
Aluminum, Dissolved		4.4	20	ug/l	50.0	4.73	95	70-130	0.9	30	
Aluminum, Total	52.3	4.4	20	ug/l	50.0	4.73	95	70-130	0.9	30	
Antimony, Dissolved	51.5	0.089	0.50	ug/l	50.0	0.522	102	70-130	0.3	30	
Antimony, Total	51.5	0.089	0.50	ug/l	50.0	0.522	102	70-130	0.3	30	
Arsenic, Dissolved	52.7	0.074	0.40	ug/l	50.0	0.978	104	70-130	1	30	
Arsenic, Total	52.7	0.074	0.40	ug/l	50.0	0.978	104	70-130	1	30	
Beryllium, Dissolved		0.062	0.10	ug/l	50.0	ND	99	70-130	0.6	30	
Beryllium, Total		0.029	0.10	ug/l	50.0	ND	99	70-130	0.6	30	

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Dylan Cawthorne

Reported:

01/09/2023 10:46

Quality Control Results

Metals by EPA 200 Series Methods (Continued)											
					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifi
tch: W2L1122 - EPA 200.8 (Continued)											
Matrix Spike Dup (W2L1122-MSD1)		K16002-04			pared: 12/14/	-					
Cadmium, Dissolved		0.042	0.20	ug/l	50.0	ND	98	70-130	0.1	30	
Cadmium, Total		0.042	0.20	ug/l	50.0	ND	98	70-130	0.1	30	
Chromium, Dissolved		0.089	0.20	ug/l	50.0	0.379	101	70-130	0.5	30	
Chromium, Total		0.089	0.20	ug/l	50.0	0.379	101	70-130	0.5	30	
Copper, Dissolved		0.23	0.50	ug/l	50.0	3.17	99	70-130	0.02	30	
Copper, Total		0.23	0.50	ug/l	50.0	3.17	99	70-130	0.02	30	
Iron, Dissolved		3.9	20	ug/l	1050	18.1	104	70-130	8.0	30	
Iron, Total		3.9	20	ug/l	1050	18.1	104	70-130	8.0	30	
Lead, Dissolved		0.083	0.20	ug/l	50.0	ND	100	70-130	0.06	30	
Lead, Total		0.083	0.20	ug/l	50.0	ND	100	70-130	0.06	30	
Nickel, Dissolved		0.16	2.0	ug/l	50.0	1.57	100	70-130	0.004	30	
Nickel, Total	*	0.16	2.0	ug/l	50.0	1.57	100	70-130	0.004	30	
Selenium, Dissolved		0.067	0.40	ug/l	50.0	0.184	96	70-130	0.4	30	
Selenium, Total		0.067	0.40	ug/l	50.0	0.184	96	70-130	0.4	30	
Silver, Dissolved	47.3	0.030	0.20	ug/l	50.0	ND	95	70-130	0.6	30	
Silver, Total	47.3	0.13	0.20	ug/l	50.0	ND	95	70-130	0.6	30	
Thallium, Dissolved	49.5	0.021	0.20	ug/l	50.0	ND	99	70-130	0.02	30	
Thallium, Total	49.5	0.021	0.20	ug/l	50.0	ND	99	70-130	0.02	30	
Zinc, Dissolved	78.5	0.80	10	ug/l	50.0	29.5	98	70-130	0.9	30	
Zinc, Total	78.5	1.7	10	ug/l	50.0	29.5	98	70-130	0.9	30	
Matrix Spike Dup (W2L1122-MSD2)	Source: 2	L08014-02		Pre	pared: 12/14/2	22 Analyzed:	12/15/22	2			
Aluminum, Dissolved		4.4	20	ug/l	50.0	ND	105	70-130	6	30	
Aluminum, Total	52.7	4.4	20	ug/l	50.0	ND	105	70-130	6	30	
Antimony, Dissolved		0.089	0.50	ug/l	50.0	33.6	104	70-130	1	30	
Antimony, Total		0.089 0.089	0.50 0.50	ug/l ug/l	50.0 50.0	33.6 33.6	104 104	70-130 70-130	1 1	30 30	
Antimony, Dissolved Antimony, Total Arsenic, Dissolved				-							
Antimony, Total	85.5	0.089	0.50	ug/l	50.0	33.6	104	70-130	1	30	
Antimony, Total Arsenic, Dissolved	85.5	0.089 0.074	0.50 0.40	ug/l ug/l	50.0 50.0	33.6 3.78	104 105	70-130 70-130	1 3	30 30	
Antimony, Total Arsenic, Dissolved Arsenic, Total	56.5 56.5 56.5 51.6	0.089 0.074 0.074	0.50 0.40 0.40	ug/l ug/l ug/l	50.0 50.0 50.0	33.6 3.78 3.78	104 105 105	70-130 70-130 70-130	1 3 3	30 30 30	
Antimony, Total Arsenic, Dissolved Arsenic, Total Beryllium, Dissolved	85.5 56.5 56.5 51.6	0.089 0.074 0.074 0.062	0.50 0.40 0.40 0.10	ug/l ug/l ug/l ug/l	50.0 50.0 50.0 50.0	33.6 3.78 3.78 ND	104 105 105 103	70-130 70-130 70-130 70-130	1 3 3 4	30 30 30 30	
Antimony, Total Arsenic, Dissolved Arsenic, Total Beryllium, Dissolved Beryllium, Total	85.5 56.5 56.5 51.6 51.6 48.0	0.089 0.074 0.074 0.062 0.029	0.50 0.40 0.40 0.10 0.10	ug/l ug/l ug/l ug/l ug/l	50.0 50.0 50.0 50.0 50.0	33.6 3.78 3.78 ND ND	104 105 105 103 103	70-130 70-130 70-130 70-130 70-130	1 3 3 4 4	30 30 30 30 30	
Antimony, Total Arsenic, Dissolved Arsenic, Total Beryllium, Dissolved Beryllium, Total Cadmium, Dissolved	56.5 56.5 56.5 51.6 48.0	0.089 0.074 0.074 0.062 0.029 0.042	0.50 0.40 0.40 0.10 0.10 0.20	ug/l ug/l ug/l ug/l ug/l	50.0 50.0 50.0 50.0 50.0 50.0	33.6 3.78 3.78 ND ND 0.0583	104 105 105 103 103 96	70-130 70-130 70-130 70-130 70-130 70-130	1 3 3 4 4 1	30 30 30 30 30 30	
Antimony, Total Arsenic, Dissolved Arsenic, Total Beryllium, Dissolved Beryllium, Total Cadmium, Dissolved Cadmium, Total	56.5 56.5 56.5 51.6 51.6 48.0 48.0	0.089 0.074 0.074 0.062 0.029 0.042	0.50 0.40 0.40 0.10 0.10 0.20	ug/l ug/l ug/l ug/l ug/l ug/l	50.0 50.0 50.0 50.0 50.0 50.0	33.6 3.78 3.78 ND ND 0.0583 0.0583	104 105 105 103 103 96 96	70-130 70-130 70-130 70-130 70-130 70-130	1 3 3 4 4 1 1	30 30 30 30 30 30 30	
Antimony, Total Arsenic, Dissolved Arsenic, Total Beryllium, Dissolved Beryllium, Total Cadmium, Dissolved Cadmium, Total Chromium, Dissolved	85.5 56.5 56.5 51.6 51.6 48.0 48.0 56.4	0.089 0.074 0.074 0.062 0.029 0.042 0.042 0.089	0.50 0.40 0.40 0.10 0.10 0.20 0.20	ug/l ug/l ug/l ug/l ug/l ug/l	50.0 50.0 50.0 50.0 50.0 50.0 50.0	33.6 3.78 3.78 ND ND 0.0583 0.0583 6.86	104 105 105 103 103 96 96	70-130 70-130 70-130 70-130 70-130 70-130 70-130	1 3 3 4 4 1 1 0.9	30 30 30 30 30 30 30 30	
Antimony, Total Arsenic, Dissolved Arsenic, Total Beryllium, Dissolved Beryllium, Total Cadmium, Dissolved Cadmium, Total Chromium, Dissolved Chromium, Dissolved	56.5 56.5 51.6 51.6 48.0 48.0 56.4 56.4 63.0	0.089 0.074 0.074 0.062 0.029 0.042 0.042 0.089 0.089	0.50 0.40 0.40 0.10 0.10 0.20 0.20 0.20	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0	33.6 3.78 3.78 ND ND 0.0583 0.0583 6.86 6.86	104 105 105 103 103 96 96 99	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	1 3 3 4 4 1 1 0.9	30 30 30 30 30 30 30 30 30	
Antimony, Total Arsenic, Dissolved Arsenic, Total Beryllium, Dissolved Beryllium, Total Cadmium, Dissolved Cadmium, Total Chromium, Dissolved Chromium, Dissolved Chromium, Dissolved Chromium, Total Copper, Dissolved	85.5 56.5 56.5 51.6 48.0 48.0 56.4 56.4 63.0	0.089 0.074 0.074 0.062 0.029 0.042 0.042 0.089 0.089	0.50 0.40 0.40 0.10 0.10 0.20 0.20 0.20 0.20 0.50	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0	33.6 3.78 3.78 ND ND 0.0583 0.0583 6.86 6.86 15.6	104 105 105 103 103 96 96 99 99	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	1 3 3 4 4 1 1 0.9 0.9	30 30 30 30 30 30 30 30 30 30	
Antimony, Total Arsenic, Dissolved Arsenic, Total Beryllium, Dissolved Beryllium, Total Cadmium, Dissolved Cadmium, Total Chromium, Dissolved Chromium, Total Copper, Dissolved Copper, Total	56.5 56.5 51.6 51.6 48.0 48.0 56.4 56.4 63.0 63.0	0.089 0.074 0.074 0.062 0.029 0.042 0.042 0.089 0.089 0.23	0.50 0.40 0.40 0.10 0.10 0.20 0.20 0.20 0.20 0.50	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0	33.6 3.78 3.78 ND ND 0.0583 0.0583 6.86 6.86 15.6	104 105 105 103 103 96 96 99 99	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	1 3 3 4 4 1 1 0.9 0.9	30 30 30 30 30 30 30 30 30 30 30	
Antimony, Total Arsenic, Dissolved Arsenic, Total Beryllium, Dissolved Beryllium, Total Cadmium, Dissolved Cadmium, Total Chromium, Dissolved Chromium, Total Copper, Dissolved Copper, Total Iron, Dissolved	85.5 56.5 51.6 51.6 48.0 48.0 56.4 56.4 63.0 63.0 1210	0.089 0.074 0.074 0.062 0.029 0.042 0.042 0.089 0.089 0.23 0.23	0.50 0.40 0.40 0.10 0.20 0.20 0.20 0.20 0.50 0.50	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0	33.6 3.78 3.78 ND ND 0.0583 0.0583 6.86 6.86 15.6 15.6	104 105 105 103 103 96 96 99 95 95	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	1 3 3 4 4 1 1 0.9 0.9 1 1	30 30 30 30 30 30 30 30 30 30 30 30	

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Dylan Cawthorne

Reported:

01/09/2023 10:46

Quality Control Results

Metals by EPA 200 Series Methods (Continued)											
					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
atch: W2L1122 - EPA 200.8 (Continued)											
Matrix Spike Dup (W2L1122-MSD2)	Source: 2	L08014-02		Pre	pared: 12/14/2	22 Analyzed:	12/15/2	2			
Nickel, Dissolved	84.3	0.16	2.0	ug/l	50.0	37.0	95	70-130	1	30	
Nickel, Total	84.3	0.16	2.0	ug/l	50.0	37.0	95	70-130	1	30	
Selenium, Dissolved	47.9	0.067	0.40	ug/l	50.0	0.412	95	70-130	0.1	30	
Selenium, Total	47.9	0.067	0.40	ug/l	50.0	0.412	95	70-130	0.1	30	
Silver, Dissolved	46.3	0.030	0.20	ug/l	50.0	ND	93	70-130	1	30	
Silver, Total	46.3	0.13	0.20	ug/l	50.0	ND	93	70-130	1	30	
Thallium, Dissolved	51.9	0.021	0.20	ug/l	50.0	ND	104	70-130	1	30	
Thallium, Total	51.9	0.021	0.20	ug/l	50.0	ND	104	70-130	1	30	
Zinc, Dissolved	87.0	0.80	10	ug/l	50.0	40.2	94	70-130	3	30	
Zinc, Total	87.0	1.7	10	ug/l	50.0	40.2	94	70-130	3	30	
atch: W2L1127 - EPA 245.1											
Blank (W2L1127-BLK1)				Pre	pared: 12/14/2	22 Analyzed:	12/15/2	2			
Mercury, Dissolved	ND	0.037	0.050	ug/l							
Mercury, Total	ND	0.037	0.050	ug/l							
LCS (W2L1127-BS1)				Pre	pared: 12/14/2	22 Analyzed:	12/15/2	2			
Mercury, Dissolved	1.05	0.037	0.050	ug/l	1.00		105	85-115			
Mercury, Total	1.05	0.037	0.050	ug/l	1.00		105	85-115			
Matrix Spike (W2L1127-MS1)	Source: 2	L07018-01		Pre	pared: 12/14/2	22 Analyzed:	12/15/2	2			
Mercury, Dissolved	1.27	0.037	0.050	ug/l	1.00	ND	127	70-130			
Mercury, Total	1.27	0.037	0.050	ug/l	1.00	ND	127	70-130			
Matrix Spike (W2L1127-MS2)	Source: 2	L08103-01		Pre	pared: 12/14/2	22 Analyzed:	12/15/2	2			
Mercury, Dissolved	1.01	0.037	0.050	ug/l	1.00	ND	101	70-130			
Mercury, Total	1.01	0.037	0.050	ug/l	1.00	ND	101	70-130			
Matrix Spike Dup (W2L1127-MSD1)	Source: 2	L07018-01		Pre	pared: 12/14/2	22 Analyzed:	12/15/2	2			
Mercury, Dissolved	1.07	0.037	0.050	ug/l	1.00	ND	107	70-130	16	20	
Mercury, Total	1.07	0.037	0.050	ug/l	1.00	ND	107	70-130	16	20	
Matrix Spike Dup (W2L1127-MSD2)		L08103-01			pared: 12/14/2	•					
Mercury, Dissolved		0.037	0.050	ug/l	1.00	ND	105	70-130	5	20	
Mercury, Total	1.05	0.037	0.050	ug/l	1.00	ND	105	70-130	5	20	

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Dylan Cawthorne

Reported:

01/09/2023 10:46

Quality Control Results

Semivolatile Organics - Low Level by Tandem	GC/MS/MS										
Analyte	Result	MDL	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifi
atch: W2L1204 - EPA 625.1											
Blank (W2L1204-BLK1)				Pre	pared: 12/15/2	2 Analyzed:	12/20/22	2			
Acenaphthene	ND	1.2	5.0	ng/l		•					
Acenaphthylene	5.83	1.0	5.0	ng/l							
Anthracene	ND	1.1	5.0	ng/l							
Benzo (a) anthracene	ND	0.92	5.0	ng/l							
Benzo (a) pyrene	ND	0.97	5.0	ng/l							
Benzo (b) fluoranthene	ND	1.6	5.0	ng/l							
Benzo (g,h,i) perylene	ND	1.0	5.0	ng/l							
Benzo (k) fluoranthene	ND	1.2	5.0	ng/l							
Chrysene	ND	1.4	5.0	ng/l							
Dibenzo (a,h) anthracene	ND	1.2	5.0	ng/l							
Fluoranthene	ND	1.5	5.0	ng/l							
Fluorene	1.16	1.1	5.0	ng/l							B-02
Indeno (1,2,3-cd) pyrene	ND	0.97	5.0	ng/l							
Naphthalene	7.95	3.2	5.0	ng/l							
Phenanthrene	3.30	3.0	5.0	ng/l							B-02
Pyrene		1.4	5.0	ng/l							
Surrogate(s) 1,3-Dimethyl-2-nitrobenzene	77.8			ng/l	100		78	62-120			
Perylene-d12	66.0			ng/l	100		66	36-120			
LCS (W2L1204-BS1)				Pre	pared: 12/15/2	2 Analyzed:	12/19/22	2			
Acenaphthene	45.6	1.2	5.0	ng/l	50.0		91	60-132			
Acenaphthylene	45.3	1.0	5.0	ng/l	50.0		91	54-126			
Anthracene	47.9	1.1	5.0	ng/l	50.0		96	43-120			
Benzo (a) anthracene	38.9	0.92	5.0	ng/l	50.0		78	42-133			
Benzo (a) pyrene	26.8	0.97	5.0	ng/l	50.0		54	32-148			
Benzo (b) fluoranthene	32.8	1.6	5.0	ng/l	50.0		66	42-140			AN
Benzo (g,h,i) perylene	19.1	1.0	5.0	ng/l	50.0		38	0.1-195			
Benzo (k) fluoranthene	29.9	1.2	5.0	ng/l	50.0		60	25-146			AN
Chrysene		1.4	5.0	ng/l	50.0		72	44-140			
Dibenzo (a,h) anthracene	19.0	1.2	5.0	ng/l	50.0		38	0.1-200			
Fluoranthene	46.7	1.5	5.0	ng/l	50.0		93	43-121			
Fluorene	48.4	1.1	5.0	ng/l	50.0		97	70-120			
Indeno (1,2,3-cd) pyrene	20.9	0.97	5.0	ng/l	50.0		42	0.1-151			
Naphthalene	46.9	3.2	5.0	ng/l	50.0		94	36-120			
Phenanthrene	49.5	3.0	5.0	ng/l	50.0		99	65-120			
Pyrene		1.4	5.0	ng/l	50.0		90	70-120			
Surrogate(s) 1,3-Dimethyl-2-nitrobenzene				ng/l	100		91	62-120			
Perylene-d12	66.9			ng/l	100		67	36-120			

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Dylan Cawthorne

Reported:

01/09/2023 10:46

Quality Control Results

					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
atch: W2L1204 - EPA 625.1 (Continued)											
LCS Dup (W2L1204-BSD1)				Pre	oared: 12/15/2	22 Analyzed:	12/19/22	2			
Acenaphthene	44.7	1.2	5.0	ng/l	50.0		89	60-132	2	30	
Acenaphthylene	45.7	1.0	5.0	ng/l	50.0		91	54-126	1	30	
Anthracene	44.9	1.1	5.0	ng/l	50.0		90	43-120	6	30	
Benzo (a) anthracene	36.1	0.92	5.0	ng/l	50.0		72	42-133	8	30	
Benzo (a) pyrene	23.3	0.97	5.0	ng/l	50.0		47	32-148	14	30	
Benzo (b) fluoranthene	31.5	1.6	5.0	ng/l	50.0		63	42-140	4	30	AN-
Benzo (g,h,i) perylene	15.5	1.0	5.0	ng/l	50.0		31	0.1-195	21	30	
Benzo (k) fluoranthene	25.7	1.2	5.0	ng/l	50.0		51	25-146	15	30	AN-
Chrysene	33.6	1.4	5.0	ng/l	50.0		67	44-140	7	30	
Dibenzo (a,h) anthracene	14.4	1.2	5.0	ng/l	50.0		29	0.1-200	28	30	
Fluoranthene	44.8	1.5	5.0	ng/l	50.0		90	43-121	4	30	
Fluorene	47.6	1.1	5.0	ng/l	50.0		95	70-120	2	30	
Indeno (1,2,3-cd) pyrene	16.5	0.97	5.0	ng/l	50.0		33	0.1-151	23	30	
Naphthalene	43.5	3.2	5.0	ng/l	50.0		87	36-120	7	30	
Phenanthrene	47.3	3.0	5.0	ng/l	50.0		95	65-120	5	30	
Pyrene	43.0	1.4	5.0	ng/l	50.0		86	70-120	5	30	
Surrogate(s)											
				ng/l	100		79	62-120			
Perylene-d12	52.9			ng/l	100		53	36-120			

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Dylan Cawthorne

Reported:

01/09/2023 10:46

Item

Notes and Definitions

AN-IP	Sample results for structural isomers may have contribution from their isomeric pair.
В	Blank contamination. The analyte was found in the associated blank as well as in the sample.
B-02	This analyte is detected in the method blank below the MRL, but above the method acceptance criteria.
FILT	The sample was filtered prior to analysis.
J	Estimated conc. detected <mrl and="">MDL.</mrl>
M-02	Due to the nature of matrix interferences, sample was diluted prior to preparation. The MDL and MRL were raised due to the dilution.
MS-01	The spike recovery for this QC sample is outside of established control limits possibly due to sample matrix interference.
ND	Not Detected
%REC	Percent Recovery Percent Recovery
%REC Dil	Percent Recovery Dilution
	•
Dil	Dilution
Dil MDL	Dilution Method Detection Limit The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence.
Dil MDL MRL	Dilution Method Detection Limit The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. The MRL is also known as Limit of Quantitation (LOQ) NOT DETECTED at or above the Method Reporting Limit (MRL). If Method Detection Limit (MDL) is reported, then ND means not detected at or
Dil MDL MRL ND	Dilution Method Detection Limit The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. The MRL is also known as Limit of Quantitation (LOQ) NOT DETECTED at or above the Method Reporting Limit (MRL). If Method Detection Limit (MDL) is reported, then ND means not detected at or above the MDL.

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

All results are expressed on wet weight basis unless otherwise specified.

 $All \ samples \ collected \ by \ Weck \ Laboratories \ have \ been \ sampled \ in \ accordance \ to \ laboratory \ SOP \ Number \ MIS002.$

|--|

Chain of Custody

Page <u>1</u> of <u>3</u>

From:		To:		Lab Notes:								
WSP Environment & Infrastructure Solutions 9177 Sky Park Court San Diego, CA 92123 Industry, CA 91745 (661) 373-5505 (626) 336-2139 (858) 278-5300 Fax Contact: Brenda Stevens/Kimberly Henry Weck Laboratories 14859 Clark Avenue 1626) 336-2139 (626) 336-2139 Contact: Chris Samatmanakit												
PO#:	Project	t Number:		Project Name: Sample Matrix:								
C015102726	22-0004		SGVCOG Fire Effects Study	<u> </u>	/ater							
SampleID	Sample Date	Sample Time	Sample Type	Analysis	Container	Pres	No. of Bottles					
F_193B_R-FES-D1-120822-P	12/08/22	0715	Grab	Chlorophyll-a (SM 10200H)	1-L Amber Poly	Unpres.	1					
F_193B_R-FES-D1-120822-P	12/08/22	0715	Grab	Total Metals (EPA 200.8); Hardness (EPA 200.7); Total Phosphorus (EPA 200.7)	500-mL Poly-Metals	HNO3	1					
F_193B_R-FES-D1-120822-P	12/08/22	0715	Grab	Dissolved Metals (EPA 200.8); Dissolved Phosphorus (EPA 200.7)	500-mL Poly-Metals Diss	Unpres.	1					
F_193B_R-FES-D1-120822-P	12/08/22	0715	Grab	Total Hexavalent Chromium (EPA 218.6)	60-mL Poly	(NH4)2SO4/NH 4OH(0.6mL)	1					
F_193B_R-FES-D1-120822-P	12/08/22	0715	Grab	Dissolved Hexavalent Chromium (EPA 218.6)	60-mL Poly	Unpres.	1					
=_193B_R-FES-D1-120822-P	12/08/22	0715	Grab	TØS (SM 2540C); TSØ (SM 2540D)	2-L Poly	Unpres.	1					
F_193B_R-FES-D1-120822-P	12/08/22	0715	Grab	Ammonia∕(EPA 350.1); TKŃ (EPA 351.2)	500-mL Poly	H2SO4	1					
F_193B_R-FES-D1-120822-P	12/08/22	0715	Grab	Nitrate N (EPÁ 353.2); Nitrite∕Ń (EPA 353.2)	250-mL Poly	Unpres.	1					
F_193B_R-FES-D1-120822-P	12/08/22	0715	Grab	PAH (EPA 625.1)	1-L Amber Glass	Unpres.	2					
F_194B_R-FES-D1-120822-P	12/08/22	0804	Grab	Chlorophyll-a (SM 10200H)	1-L Amber Poly	Unpres.	1					
F_194B_R-FES-D1-120822-P	12/08/22	0804	Grab	Total Metals (EPA 200.8); Hardness (EPA 200.7); Total Phosphorus (EPA 200.7)	500-mL Poly-Metals	HNO3	1					
F_194B_R-FES-D1-120822-P	12/08/22	0804	Grab	Dissolved Metals (EPA 200.8); Dissolved Phosphorus (EPA 200.7)	500-mL Poly-Metals Diss	Unpres.	1					
Special Instructions/Comments:												
Metals (Dissolved and Total) to include alu Please provide results to Brenda Stevens (minum, antimor brenda.stevens	ny, arsênic, berylîiน s@wsp.com) and L	m, cadmiùm, chròm uis De La Torre (luis	ium (total), chromíům (hexavalent), copper, îron, Îead, mercury, nickel, selènium, silve s.delatorre@wsp.com)	r, thallium, and zinc							
Sampled and Relinquished By:				Received By:								
Print: Luis De La Torre		Date/Time: 12	-8-22	Print:	Date/Time:							
sign: his De La Jove			11:05	Sign: \	12-08-22	(1):(0						
Print:		Date/Time:		Print:	Date/Time:							
Sign:				Sign:								
Print:		Date/Time:		Print:	Date/Time:							
Sign:				Sign:								
						- 3446						

21.08112

|--|--|--|--|

Chain of Custody

Page <u>2</u> of <u>3</u>

826											
From:		То:		Lab Notes:							
WSP Environment & Infrastructure Solution	าร	Weck Laboratories									
9177 Sky Park Court		14859 Clark Aver									
San Diego, CA 92123		Industry, CA 9174	15								
(661) 373-5505		(626) 336-2139									
(858) 278-5300 Fax		(626) 336-2634 F									
Contact: Brenda Stevens/Kimberly Henry		Contact: Chris Sa	matmanakit								
PO#:	Project	t Number:		Project Name: Sample Matrix:							
C015102726	5025-	22-0004		SGVCOG Fire Effects Study	V	/ater					
SampleID	Sample Date	Sample Time	Sample Type	Analysis	Container	Pres	No. of Bottles				
F_194B_R-FES-D1-120822-P	12/08/22	0304	Grab	Total Hexavalent Chromium (EPA 218.6)	60-mL Poly	(NH4)2SO4/NH 4OH(0.6mL)	1				
F_194B_R-FES-D1-120822-P	12/08/22	0804	Grab	Dissolved Hexavalent Chromium (EPA 218.6)	60-mL Poly	Unpres.	1				
F_194B_R-FES-D1-120822-P	12/08/22	0804	Grab	TDS (SM 2540C); TSS (SM 2540D)	2-L Poly	Unpres.	1				
F_194B_R-FES-D1-120822-P	12/08/22	0804	Grab	Ammonia (EPA 350.1); TKN (EPA 351.2)	500-mL Poly	H2SO4	1				
F_194B_R-FES-D1-120822-P	12/08/22	P080	Grab	Nitrate N (EPA 353.2); Nitrite N (EPA 353.2)	250-mL Poly	Unpres.	1				
F_194B_R-FES-D1-120822-P	12/08/22	0804	Grab	PAH (EPA 625.1)	1-L Amber Glass	Unpres.	2				
ARCAD_WA_CON-FES-D1-120822-P	12/08/22	0915	Grab	Chlorophyll-a (SM 10200H)	1-L Amber Poly	Unpres.	1				
ARCAD_WA_CON-FES-D1-120822-P	12/08/22	0915	Grab	Total Metals (EPA 200.8); Hardness (EPA 200.7); Total Phosphorus (EPA 200.7)	500-mL Poly-Metals		1				
ARCAD_WA_CON-FES-D1-120822-P	12/08/22	0915	Grab	Dissolved Metals (EPA 200.8); Dissolved Phosphorus (EPA 200.7)	500-mL Poly-Metals Diss	Unpres.	1				
ARCAD_WA_CON-FES-D1-120822-P	12/08/22	0915	Grab	Total Hexavalent Chromium (EPA 218.6)	60-mL Poly	(NH4)2SO4/NH 4OH(0.6mL)	1				
ARCAD_WA_CON-FES-D1-120822-P	12/08/22	0915	Grab	Dissolved Hexavalent Chromium (EPA 218.6)	60-mL Poly	Unpres.	1				
ARCAD_WA_CON-FES-D1-120822-P	12/08/22	0915	Grab	TDS (SM 2540C); TSS (SM 2540D)	2-L Poly	Unpres.	1				
Special Instructions/Comments:											
Metals (Dissolved and Total) to include alu Please provide results to Brenda Stevens (ium (total), chromium (hexavalent), copper, iron, lead, mercury, nickel, selenium, silve s.delatorre@wsp.com)	r, thallium, and zinc						
Sampled and Relinquished By:				Received By:							
Print: Luis De La Terre		Date/Time: 16	1-8-22	Print:	Date/Time:						
Sign: Lux De Le Jone		<u></u>	11:05	Sign:	17-08-02 11	-10	aun, m.i.				
Print:		Date/Time:		Print(\	Date/Time:						
Sign:				Sign:							
Print:		Date/Time:		Print:	Date/Time:						
Sign:				Sign:			_				

|--|--|--|--|--|

Chain of Custody

Page 3 of 3

From:		To:		Lab Notes:			
WSP Environment & Infrastructure Solution	าร	Weck Laboratories					
9177 Sky Park Court		14859 Clark Aven	ue				
San Diego, CA 92123		Industry, CA 9174	5				
(661) 373-5505		(626) 336-2139					
(858) 278-5300 Fax		(626) 336-2634 F	ax				
Contact: Brenda Stevens/Kimberly Henry		Contact: Chris Sa	matmanakit				
PO#:	Project	Number:		Project Name:	<u> </u>	le Matrix:	
C015102726	5025-2	22-0004		SGVCOG Fire Effects Study	V	/ater	
SampleID	Sample Date	Sample Time	Sample Type	Analysis	Container	Pres	No. of Bottles
ARCAD_WA_CON-FES-D1-120822-P	12/08/22	0915	Grab	Ammonia (EPA 350.1); TKN (EPA 351.2)	500-mL Poly	H2SO4	1
ARCAD_WA_CON-FES-D1-120822-P	12/08/22	0915	Grab	Nitrate N (EPA 353.2); Nitrite N (EPA 353.2)	250-mL Poly	Unpres.	1
ARCAD_WA_CON-FES-D1-120822-P	12/08/22	0915	Grab	PAH (EPA 625.1)	1-L Amber Glass	Unpres.	2
ARCAD_WA_CON-FES-D1-120822-D	12/08/22	0915	Grab	Chlorophyll-a (SM 10200H)	1-L Amber Poly	Unpres.	1
ARCAD_WA_CON-FES-D1-120822-D	12/08/22	0915	Grab	Total Metals (EPA 200.8); Hardness (EPA 200.7); Total Phosphorus (EPA 200.7)	500-mL Poly-Metals	ниоз	1
ARCAD_WA_CON-FES-D1-120822-D	12/08/22	0915	Grab	Dissolved Metals (EPA 200.8); Dissolved Phosphorus (EPA 200.7)	500-mL Poly-Metals Diss	Unpres.	1
ARCAD_WA_CON-FES-D1-120822-D	12/08/22	0915	Grab	Total Hexavalent Chromium (EPA 218.6)	60-mL Poly	(NH4)2SO4/NH 4OH(0.6mL)	1
ARCAD_WA_CON-FES-D1-120822-D	12/08/22	0915	Grab	Dissolved Hexavalent Chromium (EPA 218.6)	60-mL Poly	Unpres.	1
ARCAD_WA_CON-FES-D1-120822-D	12/08/22	0915	Grab	TDS (SM 2540C); TSS (SM 2540D)	2-L Poly	Unpres.	1
ARCAD_WA_CON-FES-D1-120822-D	12/08/22	0915	Grab	Ammonia (EPA 350.1); TKN (EPA 351.2)	500-mL Poly	H2SO4	1
ARCAD_WA_CON-FES-D1-120822-D	12/08/22	0915	Grab	Nitrate N (EPA 353.2); Nitrite N (EPA 353.2)	250-mL Poly	Unpres.	1
ARCAD_WA_CON-FES-D1-120822-D	12/08/22	0915	Grab	PAH (EPA 625.1)	1-L Amber Glass	Unpres.	2
Special Instructions/Comments:							
Metals (Dissolved and Total) to include alu Please provide results to Brenda Stevens				ium (total), chromium (hexavalent), copper, iron, lead, mercury, nickel, selenium, silver s.delatorre@wsp.com)	r, thallium, and zinc		
Sampled and Relinquished By:				Received By:			
Print: Luis De Latorre	"	Date/Time: 12	-8-22	Print:	Date/Time:		
Sign: dura De la Joure		•	11:05	Sign:	12-08-22	11:10	
Print:		Date/Time:		Print: (\	Date/Time:		
Sign:				Sign: \			
Print:		Date/Time:		Print:	Date/Time:		
Sign:				Sign:			

Sample Receipt Checklist

12/08/22 @ 11:10	04	Client	Comments																☐ <6mm/Pea size	pH paper Lot# 2071882	CI Test Strip Lot# 061221E	pH paper Lot#	pri keduling: Acid Lot#
Date/Time Received:	# of Samples:	Delivered by:	N/A				1 1		1	ı	•		l	I	ı								
Daf			S						Ų		ų.												
			Yes	\boxtimes	\boxtimes	\boxtimes			4.8°C	\boxtimes	Wet	\boxtimes	\boxtimes	\boxtimes	\boxtimes			\boxtimes			\boxtimes		
Weck WKO: 2L08112	WKO Logged by: Jerico Bolotano	Samples Checked by: Jerico Bolotano	Task	COC present at receipt?	COC properly completed?	COC matches sample labels?		Project Manager notified?	Sample Temperature	Samples received on ice?	Ice Type (Blue/Wet)	All samples intact?	Samples in proper containers?	Sufficient sample volume?	Samples intact?	Received within holding time?	Project Manager notified?	Sample labels checked for correct preservation?	VOC Headspace: (No) none, If Yes (See comment) 524.2, 524.3, 624.1, 8260, 1666 P/T, LUFT	pH verified upon receipt? Metals <2; H2SO4 pres tests <2; 522<4; TOC <2; 525.2<2; 6710B<2; 608.3 5-9	Free Chlorine Tested <0.1	O&G pH <2 verified?	pH adiusted for O&G
	WK	Samples	_				ဘ						-			Кес			·	tion Verifics			

PM Comments

Project Manager notified?

pH adjusted for O&G

Amt added: Acid Lot#

12/08/22 Date: Sample Receipt Checklist Prepared by: Signature: JB

Enthalpy Analytical 931 West Barkley Ave Orange, CA 92868 (714) 771-6900

enthalpy.com

Lab Job Number: 474664

Report Level: II

Report Date: 12/22/2022

Analytical Report *prepared for:*

Chris Samatmanakit Weck Laboratories 14859 Clark Ave. City of Industry, CA 91745

Location: 2L08112

Authorized for release by:

duphgias Le

Quynhgiao Le, Project Manager 714-7716900

quynhgiao.le@enthalpy.com

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the above signature which applies to this PDF file as well as any associated electronic data deliverable files. The results contained in this report meet all requirements of NELAP and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

CA ELAP# 1338, NELAP# 4038, SCAQMD LAP# 18LA0518, LACSD ID# 10105

Sample Summary

Chris Samatmanakit

Weck Laboratories

14859 Clark Ave.

City of Industry, CA 91745

Lab Job #: 474664

Location: 2L08112

Date Received: 12/09/22

Sample ID	Lab ID	Collected	Matrix
2L08112-01/F_193_R-FES-D1-120822-P	474664-001	12/08/22 07:15	Water
2L08112-02/F_194B_R-FES-D1-120822-P	474664-002	12/08/22 08:04	Water
2L08112-03/ARCAD_WA_CON-FES-D1-	474664-003	12/08/22 09:15	Water
120822-P			
2L08112-04/ARCAD_WA_CON-FES-D1-	474664-004	12/08/22 09:15	Water
120822-D			

Subcontract Order

Subcontracted Laboratory:

Enthalpy Analytical 931 W. Barkley Ave Orange, CA 92868 Phone: (714) 771-6900 Fax: (714) 538-1209

474664

Turn Around Time:

Normal unless noted in comments

Project Manager:

Chris Samatmanakit

Project Name: Project Number: San Gabriel Valley Council of Governn

SGVCOG Fire Effects Study

Sampler Employed by:

Drinking Water:

Yes / No

Need Transfer File (xls):

Yes / No

Tracking Number:

Work Order: 2L08112

Analysis

Expires Comments

Sampled: 12/08/2022 07:15

Sample ID: 2L08112-01/F_193_R-FES-D1-120822-P

Sample comment: Chlorophyll-a - SM 10200H

12/10/2022 07:15

Matrix:Water

Sampled By: Client

1000mL filtered on 12/8/22 at 19:15. TestAmerica EDD

needed.

Containers Supplied:

Sample ID: 2L08112-02/F_194B_R-FES-D1-120822-P

Sample comment:

Chlorophyll-a - SM 10200H

12/10/2022 08:04

Sampled: 12/08/2022 08:04

Matrix:Water

Matrix: Water

Sampled By: Client

1031mL filtered on 12/8/22 at 19:10. TestAmerica EDD

needed

Containers Supplied:

Sample ID: 2L08112-03/ARCAD_WA_CON-FES-D1-120822-P

Sample ID: 2L08112-04/ARCAD_WA_CON-FES-D1-120822-D

Sample comment:

Containers Supplied:

Chlorophyll-a - SM 10200H

12/10/2022 09:15

Sampled: 12/08/2022 09:15

Sampled By: Client

1006mL filtered on 12/8/22 at 19:20. TestAmerica EDD

needed.

Sample comment:

Chlorophyll-a - SM 10200H

12/10/2022 09:15

Sampled: 12/08/2022 09:15

Matrix:Water

Sampled By: Client

1030mL filtered on 12/8/22 at 19:25. TestAmerica EDD

needed.

Containers Supplied:

Remarks / Special Comments:

Sample Condition

Temperature:

Preserved:

15.1

Evidence Seal Intact:

Yes / No

Yes / No

Container Attacked:

Yes / No

Preserved at Lab: Yes / No

Relingished By

Date / Time Receiv

12/09/22

1310. Date / Time

Relingished By

Date / Time Received By

Date / Time

Page 1 of 1

SAMPLE ACCEPTANCE CHECKLIST

Section 1		_		
-14 1A71-1 1	Project: 2L08112			
1 12/0/22		✓Yes	□No	
	ampier 5 Name Frescht.	1163	INO	
Section 2		61	(0.6)	
Sample(s) received in a cooler? Yes, How many?	No (skip section 2)	Sampi	e Temp (°C) (No Cooler)	:15.1
Sample Temp (°C), One from each cooler: #1:	#2:#3:	#4:		
(Acceptance range is < 6°C but not frozen (for Microbiology samples, acceptance	ce range is < 10°C but not frozen). It is	s acceptable	for sample	s collected
the same day as sample receipt to have a higher temperature Shipping Information:	e as long as there is evidence that coo	ing has beg	un.)	
Section 3				
	¬, , , , , , , , , , , , , , , , , , ,			
Was the cooler packed with: Ice Ice Packs	Bubble Wrap	oam		
PaperNone Cooler Temp (°C): #1: #2:	Other			
	#3:	#4:		
Section 4		YES	NO	N/A
Was a COC received?		٧		
Are sample IDs present?		V		
Are sampling dates & times present?		V		
Is a relinquished signature present?		V		
Are the tests required clearly indicated on the COC?		1		
Are custody seals present?				
If custody seals are present, were they intact?				1
Are all samples sealed in plastic bags? (Recommended for				_/_
Did all samples arrive intact? If no, indicate in Section 4 bel	ow.	_/		
Did all bottle labels agree with COC? (ID, dates and times)		_ /		·
Were the samples collected in the correct containers for the		V		
Are the containers labeled with the correct preservat				
Is there headspace in the VOA vials greater than 5-6 mm in Was a sufficient amount of sample submitted for the reque	diameter?			
	ested tests?	<i>V</i>		
Section 5 Explanations/Comments Received filters wrapped in tinfoil. Not frozen. Tim not time sampled.	es on containers repres	sent tim	e filtere	ed,
Section 6			· · · · · · · · · · · · · · · · · · ·	
For discrepancies, how was the Project Manager notified?	Verbal PM Initials:	ate/Time		
	Email (email sent to/on		1	
Project Manager's response:	·			
Completed By: Held Salvestum D	ate: 12/9/22			

Enthalpy Knalytical, a subsidiary of Montrose Environmental Group ,Inc. 931 W. Barkley Ave, Orange, CA 92868 • T: (714) 771-6900 • F: (714) 538-1209

www.enthalpy.com/socal Sample Acceptance Checklist – Rev 4, 8/8/2017

Analysis Results for 474664

Chris Samatmanakit Weck Laboratories 14859 Clark Ave. City of Industry, CA 91745

Lab Job #: 474664 Location: 2L08112 Date Received: 12/09/22

Sample ID: Lab ID: 474664-001 Collected: 12/08/22 07:15

2L08112-01/F_193_R-FES-D1-120822-P Matrix: Water

Received filtered & frozen. Volume: 1000 ml

474664-001 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: SM 10200-H									
Chlorophyll a	ND		mg/M3	1.0	1	303403	12/08/22 19:50	12/12/22 11:33	ATP

Sample ID: Lab ID: 474664-002 Collected: 12/08/22 08:04

2L08112-02/F_194B_R-FES-D1-120822-P Matrix: Water

Received filtered & frozen. Volume: 1031 mL

474664-002 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: SM 10200-H									
Chlorophyll a	1.2		mg/M3	1.0	1	303403	12/08/22 19:10	12/12/22 11:33	ATP

Sample ID: Lab ID: 474664-003 Collected: 12/08/22 09:15

2L08112-03/ARCAD_WA_CON-FES-D1-120822-P Matrix: Water

Received filtered & frozen. Volume: 1006 mL

474664-003 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: SM 10200-H									
Chlorophyll a	4.4		mg/M3	1.0	1	303403	12/08/22 19:20	12/12/22 11:33	ATP

Sample ID: Lab ID: 474664-004 Collected: 12/08/22 09:15

2L08112-04/ARCAD_WA_CON-FES-D1-120822-D Matrix: Water

Received filtered & frozen. Volume: 1030 mL

474664-004 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: SM 10200-H	•	•					_		
Chlorophyll a	12		mg/M3	1.0	1	303403	12/08/22 19:25	12/12/22 11:33	ATP

ND Not Detected

FINAL REPORT

Work Orders: 3F27060 Report Date: 8/25/2023

Received Date: 06/27/2023

Turnaround Time: Normal

Phones: (858) 514-7729

Fax: (858) 278-5300

P.O. #: C015102726

Billing Code:

Project: 5025-22-0004

Attn: Brenda Stevens

Client: WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A

San Diego, CA 92123

Dod-ELAP ANAB #ADE-2882 • Dod-ISO ANAB # • ELAP-CA #1132 • EPA-UCMR #CA00211 • ISO17025 ANAB #L2457.01 • LACSD #10143

This is a complete final report. The information in this report applies to the samples analyzed in accordance with the chain-of-custody document. Weck Laboratories certifies that the test results meet all requirements of TNI unless noted by qualifiers or written in the Case Narrative. This analytical report must be reproduced in its entirety.

Dear Brenda Stevens,

Enclosed are the results of analyses for samples received 6/27/23 with the Chain-of-Custody document. The samples were received in good condition, at 1.6 °C and on ice. All analyses met the method criteria except as noted in the case narrative or in the report with data qualifiers.

Reviewed by:

Kim G. Tu Project Manager

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 **Project Number:** 5025-22-0004

Project Manager: Brenda Stevens

Reported:

08/25/2023 11:53

Sample Summary

Sample Name	Sampled By	Lab ID	Matrix	Sampled	Qualifiers
F-193B-R_2223_D2_01	Luis De La Torre	3F27060-01	Water	06/27/23 09:21	
F-194B-R_2223_D2_01	Luis De La Torre	3F27060-02	Water	06/27/23 10:20	
ARCAD_WA_CON_2223_D2_01	Luis De La Torre	3F27060-03	Water	06/27/23 11:15	
F-193B-R_2223_D2_03	Luis De La Torre	3F27060-04	Water	06/27/23 09:21	

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123

Project Number: 5025-22-0004

Project Manager: Brenda Stevens

Reported:

Page 3 of 29

08/25/2023 11:53

3F27060

Sample:	F-193B-R_2223_D2_01					Sampled: (06/27/23 9:21 by L	uis De La Torr
	3F27060-01 (Water)							
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifi
nventional (Chemistry/Physical Parameters	by APHA/EPA/ASTM Methods						
Method: Cal	culation			Instr: [CALC]				
Batch ID: [CALC]	Preparation: [CALC]		Prepared: 07/14/	/23 15:08			Analyst: YM
Nitrogen,	Total	1.6	0.036	0.10	mg/l	1	07/18/23	
Method: EPA	350.1			Instr: AA06				
Batch ID: V	W3G0867	Preparation: _NONE (WETCHEM)		Prepared: 07/12/	/23 11:49			Analyst: YM
Ammonia	as N	0.17	0.017	0.10	mg/l	1	07/14/23	
Method: EPA	351.2			Instr: AA06				
Batch ID: V	W3G1099	Preparation: _NONE (WETCHEM)		Prepared: 07/14/	/23 15:08			Analyst: YM
TKN		1.6	0.065	0.10	mg/l	1	07/18/23	
Method: EPA	x 353.2			Instr: AA01				
Batch ID: V	W3F2286	Preparation: _NONE (WETCHEM)		Prepared: 06/27/	/23 14:09			Analyst: ym
Nitrate as	N		0.040	0.20	mg/l	1	06/27/23 21:29	• ,
Nitrite as N	1	ND	42	100	ug/l	1	06/27/23 21:29	
NO2+NO3	as N	ND	36	200	ug/l	1	06/27/23	
Method: SM	2540C			Instr: OVEN17				
Batch ID: V		Preparation: _NONE (WETCHEM)		Prepared: 06/27/	/22 10.42			Analyst: be
	olved Solids	380	4.0	10	mg/l	1	06/28/23	Analyst. D
Method: SM	2540D			Instr: OVEN15				
Batch ID: V		Preparation: _NONE (WETCHEM)		Prepared: 06/29/	/23 09:43			Analyst: me
	pended Solids	5		5	mg/l	1	06/29/23	7
vavalent Ch	romium by IC							
Method: EPA	•			Instr: LC13				
Batch ID: V		Preparation: _NONE (LC)		Prepared: 07/10/	/22 10·11			Analyst: CL
Chromium		2.1	0.0079	0.020	ug/l	1	07/10/23	Allalyst. CL
		2.1	0.0079	0.020	ug/l	1	07/10/23	
					3			
-	200 Series Methods							
Method: Cal				Instr: [CALC]				
Batch ID: [CALC] as CaCO3, Total	Preparation: [CALC]	0.344	Prepared: 07/11/	/23 11:03 mg/l	1	07/13/23	Analyst: kvr
Haruness	as CaCO3, IO(a)	104	0.344		ilig/i	'	07/13/23	
Method: EPA				Instr: ICP03				
Batch ID: V		Preparation: EPA 200.2	0.0700	Prepared: 07/11/		4	07/40/00	Analyst: kvi
Calcium, 1		44.0	0.0736	0.500	mg/l	1	07/13/23	
Magnesiui	,	13.0	0.0390	0.500	mg/l	1	07/13/23	
Phosphore	us, 2.000.10u	0.028	0.018	0.050	mg/l	1	07/13/23	
Phosphore	us, Total	0.068	0.018	0.050	mg/l	1	07/13/23	
Method: EPA	200.8			Instr: ICPMS06				
Batch ID: V	W3G0711	Preparation: EPA 200.2		Prepared: 07/11	/23 13:50			Analyst: ty

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 **Project Number:** 5025-22-0004

Project Manager: Brenda Stevens

Reported:

(Continued)

08/25/2023 11:53

Sample:	F-193B-R_2223_D2_01					Sampled: 06	6/27/23 9:21 by	Luis De La Torre
·	3F27060-01 (Water)					·	•	(Continued)
Analyte	, ,	Resul	t MDL	MRL	Units	Dil	Analyzed	Qualifier
etals by EPA	200 Series Methods (Continue	d)						
Method: EPA	200.8			Instr: ICPMS06	5			
Batch ID: W	/3G0711	Preparation: EPA 200.2		Prepared: 07/	11/23 13:50			Analyst: tyc
Aluminum,	Total		9 4.4	20	ug/l	1	07/12/23	J
Antimony,	Dissolved	0.8	1 0.089	0.50	ug/l	1	07/12/23	
Antimony,	Total	0.8	0.089	0.50	ug/l	1	07/12/23	
Arsenic, Di	issolved		2 0.074	0.40	ug/l	1	07/12/23	
Arsenic, To	otal		3 0.074	0.40	ug/l	1	07/12/23	
Beryllium, D	Dissolved		0.062	0.10	ug/l	1	07/12/23	
Beryllium, T	Total		0.029	0.10	ug/l	1	07/12/23	
Cadmium, [Dissolved		0.042	0.20	ug/l	1	07/12/23	
Cadmium,	Total		0.042	0.20	ug/l	1	07/12/23	
Chromium,	, Dissolved	2	0.089	0.20	ug/l	1	07/12/23	
Chromium,	, Total	2	4 0.089	0.20	ug/l	1	07/12/23	
Copper, Dis	ssolved		3 0.23	0.50	ug/l	1	07/12/23	
Copper, To	tal	.	5 0.23	0.50	ug/l	1	07/12/23	
Iron, Disso	lved		3 3.9	20	ug/l	1	07/12/23	
Iron, Total			5 3.9	20	ug/l	1	07/12/23	
Lead, Disso	olved	0.1	4 0.083	0.20	ug/l	1	07/12/23	
Lead, Total		0.2	5 0.083	0.20	ug/l	1	07/12/23	
Nickel, Dis	solved	0.5	3 0.16	2.0	ug/l	1	07/12/23	J
Nickel, Tota	al	0.4	9 0.40	2.0	ug/l	1	07/12/23	J
Selenium, I	Dissolved	0.4	3 0.067	0.40	ug/l	1	07/12/23	
Selenium, 1	Total	· · · · · · · · · · · · · · · · · · ·	4 0.067	0.40	ug/l	1	07/12/23	
Silver, Disse	olved		0.030	0.20	ug/l	1	07/12/23	
Silver, Total			0.055	0.20	ug/l	1	07/12/23	
Thallium, D	issolved		0.021	0.20	ug/l	1	07/12/23	
Thallium, To	otal		0.021	0.20	ug/l	1	07/12/23	
Zinc, Disso	olved	·	4 1.7	10	ug/l	1	07/12/23	J
Zinc, Total		· · · · · · · 5.		10	ug/l	1	07/12/23	J
Method: EPA	245 1			Instr: HG03	, and the second			
Batch ID: W		Preparation: EPA 245.1		Prepared: 07/	10/23 16·36			Analyst: KVM
Mercury, Di		· · · · · · · · · · · · · · · · · · ·	0.037	0.050	ug/l	1	07/12/23	Analyst. KVIVI
Mercury, To	otal		0.037	0.050	ug/l	1	07/12/23	
mivolatile Or	rganics - Low Level by GC/MS S	IM Mode						
Method: EPA	625.1			Instr: GCMS06	;			
Batch ID: W	/3G0052	Preparation: EPA 625/L-L SF		Prepared: 07/				Analyst: rmr
1-Methylna	phthalene	NI	0.024	0.10	ug/l	1	07/14/23	-
2-Methylna	phthalene		0.026	0.10	ug/l	1	07/14/23	
F27060								Page 4 of 2

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 **Project Number:** 5025-22-0004

Project Manager: Brenda Stevens

Reported:

08/25/2023 11:53

(Continued)

Sample: F-193B-R_2223	3_D2_01				Sampled: 06	5/27/23 9:21 by	Luis De La Torre
3F27060-01 (W	Vater)						(Continued)
Analyte	Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
Semivolatile Organics - Low Lev	el by GC/MS SIM Mode (Continued)						
Method: EPA 625.1			Instr: GCMS06				
Batch ID: W3G0052	Preparation: EPA 625/L-L SF		Prepared: 07/0	3/23 09:26			Analyst: rmr
Acenaphthene	ND	0.028	0.10	ug/l	1	07/14/23	
Acenaphthylene	ND	0.033	0.10	ug/l	1	07/14/23	
Anthracene	ND	0.025	0.10	ug/l	1	07/14/23	
Benzo (a) anthracene	ND	0.051	0.10	ug/l	1	07/14/23	
Benzo (a) pyrene	ND	0.051	0.10	ug/l	1	07/14/23	
Benzo (b) fluoranthene	ND	0.074	0.10	ug/l	1	07/14/23	
Benzo (g,h,i) perylene	ND	0.050	0.10	ug/l	1	07/14/23	
Benzo (k) fluoranthene	ND	0.059	0.10	ug/l	1	07/14/23	
Chrysene	ND	0.074	0.10	ug/l	1	07/14/23	
Dibenzo (a,h) anthracene	ND	0.081	0.10	ug/l	1	07/14/23	
Fluoranthene	ND	0.039	0.10	ug/l	1	07/14/23	
Fluorene	ND	0.029	0.10	ug/l	1	07/14/23	
Indeno (1,2,3-cd) pyrene	ND	0.065	0.10	ug/l	1	07/14/23	
Naphthalene	ND	0.026	0.10	ug/l	1	07/14/23	
Phenanthrene	ND	0.029	0.10	ug/l	1	07/14/23	
Pyrene	ND	0.040	0.10	ug/l	1	07/14/23	
Surrogate(s)							
2-Fluorobiphenyl	33%	Conc: 1.59	22-120			07/14/23	
Nitrobenzene-d5	32%	Conc: 1.55	47-120			07/14/23	S-11
Terphenyl-d14	17%	Conc: 0.824	44-129			07/14/23	S-11

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 **Project Number:** 5025-22-0004

Project Manager: Brenda Stevens

Reported:

Page 6 of 29

08/25/2023 11:53

5

3F27060

Sample Results

Sample: F	F-194B-R_2223_D2_01						Sampled: 0	6/27/23 10:20 by L	uis De La Tori
3	3F27060-02 (Water)								
Analyte		R	esult	MDL	MRL	Units	Dil	Analyzed	Qualifi
nventional Che	emistry/Physical Parameters	by APHA/EPA/ASTM Methods							
/lethod: Calcula	ation				Instr: [CALC]				
Batch ID: [CAL	LC]	Preparation: [CALC]			Prepared: 07/1	4/23 15:08			Analyst: YM
Nitrogen, Tota	al		0.63	0.036	0.10	mg/l	1	07/18/23	
Method: EPA 350	50.1				Instr: AA06				
Batch ID: W3G	G0867	Preparation: _NONE (WETCHEM)			Prepared: 07/1	2/23 11:49			Analyst: YM
Ammonia as	N		0.10	0.017	0.10	mg/l	1	07/14/23	
Method: EPA 35	1.2				Instr: AA06				
Batch ID: W3G	G1099	Preparation: _NONE (WETCHEM)			Prepared: 07/1	4/23 15:08			Analyst: YM
TKN			0.47	0.065	0.10	mg/l	1	07/18/23	
Method: EPA 35	33.2				Instr: AA01				
Batch ID: W3F	F2286	Preparation: _NONE (WETCHEM)			Prepared: 06/2	27/23 14:09			Analyst: yn
Nitrate as N			0.16	0.040	0.20	mg/l	1	06/27/23 21:30	
Nitrite as N			ND	42	100	ug/l	1	06/27/23 21:30	
NO2+NO3 as	N		160	36	200	ug/l	1	06/27/23	
Method: SM 254	40C				Instr: OVEN17				
Batch ID: W3F		Preparation: _NONE (WETCHEM)			Prepared: 06/27/23 18:43		Analyst: b		
Total Dissolve	ed Solids		220	4.0	10	mg/l	1	06/28/23	•
Method: SM 254	40D				Instr: OVEN15				
Batch ID: W3F	-2487	Preparation: _NONE (WETCHEM)			Prepared: 06/2	29/23 09:43			Analyst: m
Total Suspend	ded Solids		- 4		5	mg/l	1	06/29/23	
xavalent Chron	mium by IC								
Method: EPA 21	8.6				Instr: LC13				
Batch ID: W3G		Preparation: _NONE (LC)			Prepared: 07/1	0/23 10:11			Analyst: C
Chromium 6+	•	•	0.25	0.0079	0.020	ug/l	1	07/10/23	,
Chromium 6+	, Dissolved		0.14	0.0079	0.020	ug/l	1	07/10/23	
etals by EPA 200	0 Series Methods								
Method: Calcula	ation				Instr: [CALC]				
Batch ID: [CAL		Preparation: [CALC]			Prepared: 07/1	1/23 11:03			Analyst: kv
Hardness as			146	0.344	3.31	mg/l	1	07/13/23	,
Method: EPA 20	0.7				Instr: ICP03				
Batch ID: W3G		Preparation: EPA 200.2			Prepared: 07/1	1/23 11:03			Analyst: kv
Calcium, Tota	al	:	34.8	0.0736	0.500	mg/l	1	07/13/23	•
Magnesium, 1	Total		14.4	0.0390	0.500	mg/l	1	07/13/23	
Phosphorus, [ND	0.018	0.050	mg/l	1	07/13/23	
Phosphorus,	Total	0	.046	0.018	0.050	mg/l	1	07/13/23	
∕lethod: EPA 200	0.8				Instr: ICPMS06				
Batch ID: W3G		Preparation: EPA 200.2			Prepared: 07/1				Analyst: ty
	issolved	reparation. LTA 200.2	16	4.4	20	ug/l	1	07/12/23	Analyst. ()

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 **Project Number:** 5025-22-0004

Project Manager: Brenda Stevens

Reported:

(Continued)

08/25/2023 11:53

Sample:	F-194B-R_2223_D2_01				S	ampled: 06	/27/23 10:20 by	Luis De La Torr
	3F27060-02 (Water)							(Continued
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualific
tals by EPA	200 Series Methods (Continue	d)						
/lethod: EP/	A 200.8			Instr: ICPMS06	i			
Batch ID:	W3G0711	Preparation: EPA 200.2		Prepared: 07/1	11/23 13:50			Analyst: ty
Aluminum	n, Total	270	4.4	20	ug/l	1	07/12/23	
Antimony	,	0.63	0.089	0.50	ug/l	1	07/12/23	
Antimony	, Total	0.68	0.089	0.50	ug/l	1	07/12/23	
Arsenic, [Dissolved	2.4	0.074	0.40	ug/l	1	07/12/23	
Arsenic, 1	Total	2.6	0.074	0.40	ug/l	1	07/12/23	
Beryllium,	Dissolved		0.062	0.10	ug/l	1	07/12/23	
Beryllium,	Total		0.029	0.10	ug/l	1	07/12/23	
Cadmium,	, Dissolved	ND	0.042	0.20	ug/l	1	07/12/23	
Cadmium,	, Total	ND	0.042	0.20	ug/l	1	07/12/23	
Chromiun	n, Dissolved	0.21	0.089	0.20	ug/l	1	07/12/23	
Chromiun	n, Total	0.53	0.089	0.20	ug/l	1	07/12/23	
Copper, D	Dissolved	2.0	0.23	0.50	ug/l	1	07/12/23	
Copper, T	otal	2.6	0.23	0.50	ug/l	1	07/12/23	
Iron, Diss	olved		3.9	20	ug/l	1	07/12/23	
Iron, Total	l		3.9	20	ug/l	1	07/12/23	
Lead, Dis	solved	0.12	0.083	0.20	ug/l	1	07/12/23	
Lead, Tota	al		0.083	0.20	ug/l	1	07/12/23	
Nickel, Di		0.34	0.16	2.0	ug/l	1	07/12/23	
Nickel, To			0.40	2.0	ug/l	1	07/12/23	
-		0.13	0.067	0.40	ug/l	1	07/12/23	
Selenium,	,		0.067	0.40	ug/l	1	07/12/23	
Silver, Dis	,	ND	0.030	0.20	ug/l	1	07/12/23	
Silver, Tota		ND	0.055	0.20		1	07/12/23	
		ND	0.033	0.20	ug/l	1	07/12/23	
Thallium, I					ug/l			
Thallium,			0.021	0.20	ug/l	1	07/12/23	
Zinc, Diss			1.7	10	ug/l	1	07/12/23	
Zinc, Tota		3.3	1.7	10	ug/l	1	07/12/23	
Method: EPA	A 245.1			Instr: HG03				
Batch ID:		Preparation: EPA 245.1		Prepared: 07/1				Analyst: KV
Mercury, E	3.000.100	ND	0.037	0.050	ug/l	1	07/12/23	
Mercury, T	Total	ND	0.037	0.050	ug/l	1	07/12/23	
nivolatile C	Organics - Low Level by GC/MS S	SIM Mode						
/lethod: EP/	A 625.1			Instr: GCMS06				
Batch ID:	W3G0052	Preparation: EPA 625/L-L SF		Prepared: 07/0	03/23 09:26			Analyst: rr
1-Methyln	aphthalene	ND	0.024	0.10	ug/l	1	07/14/23	
2-Methyln	aphthalene		0.026	0.10	ug/l	1	07/14/23	
F27060								Page 7 c

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 **Project Number:** 5025-22-0004

Reported:

08/25/2023 11:53

Sample Results

Project Manager: Brenda Stevens

Sample:	F-194B-R_2223_D2_01				S	Sampled: 06,	/27/23 10:20 by	Luis De La Torre
	3F27060-02 (Water)							(Continued)
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
emivolatile O	rganics - Low Level by GC/MS S	IM Mode (Continued)						
Method: EPA	625.1			Instr: GCMS06				
Batch ID: W	V3G0052	Preparation: EPA 625/L-L SF		Prepared: 07/0	3/23 09:26			Analyst: rmr
Acenaphth	ene	ND	0.028	0.10	ug/l	1	07/14/23	
Acenaphth	ylene	ND	0.033	0.10	ug/l	1	07/14/23	
Anthracene	8	ND	0.025	0.10	ug/l	1	07/14/23	
Benzo (a) a	anthracene	ND	0.051	0.10	ug/l	1	07/14/23	
Benzo (a) ן	pyrene	ND	0.051	0.10	ug/l	1	07/14/23	
Benzo (b) f	fluoranthene	ND	0.074	0.10	ug/l	1	07/14/23	
Benzo (g,h	ı,i) perylene	ND	0.050	0.10	ug/l	1	07/14/23	
Benzo (k) f	fluoranthene	ND	0.059	0.10	ug/l	1	07/14/23	
Chrysene		ND	0.074	0.10	ug/l	1	07/14/23	
Dibenzo (a	ı,h) anthracene	ND	0.081	0.10	ug/l	1	07/14/23	
Fluoranthe	ne	ND	0.039	0.10	ug/l	1	07/14/23	
Fluorene		ND	0.029	0.10	ug/l	1	07/14/23	
Indeno (1,2	2,3-cd) pyrene	ND	0.065	0.10	ug/l	1	07/14/23	
Naphthaler	ne	ND	0.026	0.10	ug/l	1	07/14/23	
Phenanthre	ene	ND	0.029	0.10	ug/l	1	07/14/23	
Pyrene		ND	0.040	0.10	ug/l	1	07/14/23	
Surrogate(s)								
2-Fluorobip	phenyl	72%	Conc: 3.46	22-120			07/14/23	
Nitrobenze	ene-d5	70%	Conc: 3.33	47-120			07/14/23	
Terphenyl-	d14	78%	Conc: 3.70	44-129			07/14/23	

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 **Project Number:** 5025-22-0004

Project Manager: Brenda Stevens

Reported:

Page 9 of 29

08/25/2023 11:53

3F27060

Sample Results

3F27060-03 (Water)							
Analyte	Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
onventional Chemistry/Physical Parameter	s by APHA/EPA/ASTM Methods						
Method: Calculation			Instr: [CALC]				
Batch ID: [CALC]	Preparation: [CALC]		Prepared: 07/1				Analyst: YMT
Nitrogen, Total	1.8	0.036	0.10	mg/l	1	07/18/23	
Method: EPA 350.1			Instr: AA06				
Batch ID: W3G0867	Preparation: _NONE (WETCHEM)		Prepared: 07/1	12/23 11:49			Analyst: YMT
Ammonia as N	0.084	0.017	0.10	mg/l	1	07/14/23	•
Method: EPA 351.2			Instr: AA06				
Batch ID: W3G1099	Preparation: _NONE (WETCHEM)		Prepared: 07/1	14/23 15:08			Analyst: YMT
TKN	1.8	0.065	0.10	mg/l	1	07/18/23	
Method: EPA 353.2			Instr: AA01				
Batch ID: W3F2286	Preparation: _NONE (WETCHEM)		Prepared: 06/2	27/23 14:09			Analyst: ymt
Nitrate as N	ND	0.040	0.20	mg/l	1	06/27/23 21:32	
Nitrite as N	ND	42	100	ug/l	1	06/27/23 21:32	
NO2+NO3 as N	ND	36	200	ug/l	1	06/27/23	
Method: SM 2540C			Instr: OVEN17				
Batch ID: W3F2444	Preparation: _NONE (WETCHEM)		Prepared: 06/2	28/23 17:53			Analyst: jls
Total Dissolved Solids	260	4.0	10	mg/l	1	06/29/23	
Method: SM 2540D			Instr: OVEN15				
Batch ID: W3F2487	Preparation: _NONE (WETCHEM)		Prepared: 06/2	29/23 09:43			Analyst: mes
Total Suspended Solids	75		5	mg/l	1	06/29/23	
exavalent Chromium by IC							
Method: EPA 218.6			Instr: LC13				
Batch ID: W3G0518	Preparation: _NONE (LC)		Prepared: 07/1	10/23 10:11			Analyst: CLL
	1.8	0.0079	0.020	ug/l	1	07/10/23	,
Chromium 6+, Dissolved	1.7	0.0079	0.020	ug/l	1	07/10/23	
Metals by EPA 200 Series Methods							
Method: Calculation			Instr: [CALC]				
Batch ID: [CALC]	Preparation: [CALC]		Prepared: 07/1	11/23 11:03			Analyst: kvm
Hardness as CaCO3, Total	118	0.344	3.31	mg/l	1	07/13/23	,
Method: EPA 200.7			Instr: ICP03				
Batch ID: W3G0695	Preparation: EPA 200.2		Prepared: 07/1	11/23 11:03			Analyst: kvm
Calcium, Total	32.9	0.0736	0.500	mg/l	1	07/13/23	January State (CVIII)
Magnesium, Total		0.0390	0.500	mg/l	1	07/13/23	
Phosphorus, Dissolved	0.021	0.018	0.050	mg/l	1	07/13/23	
•	0.11	0.018	0.050	mg/l	1	07/13/23	
Method: EPA 200.8			Instr: ICPMS06				
Batch ID: W3G0711	Preparation: EPA 200.2		Prepared: 07/1				Analyst: tyo
Aluminum, Dissolved	5.4	4.4	20	ug/l	1	07/12/23	Analyst. tyc

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 **Project Number:** 5025-22-0004

Project Manager: Brenda Stevens

Reported:

08/25/2023 11:53

Sample Results

Sample:	ARCAD_WA_CON_2223_D2_0	01			S	Sampled: 06	/27/23 11:15 by	Luis De La Torre
	3F27060-03 (Water)							(Continued)
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
Metals by EPA	A 200 Series Methods (Continued)						
Method: EP	A 200.8			Instr: ICPMS06	i			
Batch ID:	W3G0711	Preparation: EPA 200.2		Prepared: 07/	11/23 13:50			Analyst: tyc
Aluminur	m, Total	32	4.4	20	ug/l	1	07/12/23	
Antimony	,, =	0.42	0.089	0.50	ug/l	1	07/12/23	J
Antimony	,,	0.66	0.089	0.50	ug/l	1	07/12/23	
Arsenic, l	Dissolved	1.2	0.074	0.40	ug/l	1	07/12/23	
Arsenic,	Total	2.0	0.074	0.40	ug/l	1	07/12/23	
Beryllium,	, Dissolved	ND	0.062	0.10	ug/l	1	07/12/23	
Beryllium,	, Total		0.029	0.10	ug/l	1	07/12/23	
Cadmium	, Dissolved	ND	0.042	0.20	ug/l	1	07/12/23	
Cadmium	n, Total	0.048	0.042	0.20	ug/l	1	07/12/23	J
Chromiur	m, Dissolved	3.0	0.089	0.20	ug/l	1	07/12/23	
Chromiur	m, Total	2.1	0.089	0.20	ug/l	1	07/12/23	
Copper, D	Dissolved	5.7	0.23	0.50	ug/l	1	07/12/23	
Copper, 1	Fotal		0.23	0.50	ug/l	1	07/12/23	
Iron, Diss	solved	7.7	3.9	20	ug/l	1	07/12/23	J
Iron, Tota	d	54	3.9	20	ug/l	1	07/12/23	
Lead, Dis	solved	0.19	0.083	0.20	ug/l	1	07/12/23	J
Lead, Tot	al	0.56	0.083	0.20	ug/l	1	07/12/23	
Nickel, Di	issolved	0.31	0.16	2.0	ug/l	1	07/12/23	J
Nickel, To			0.40	2.0	ug/l	1	07/12/23	J
•			0.067	0.40	ug/l	1	07/12/23	J
Selenium		····· 0.33	0.067	0.40	ug/l	1	07/12/23	J
Silver, Dis	,	ND	0.030	0.20	ug/l	1	07/12/23	· ·
Silver, Tot		ND	0.055	0.20	ug/l	1	07/12/23	
		ND	0.033	0.20		1	07/12/23	
Thallium,		ND	0.021	0.20	ug/l	1	07/12/23	
,					ug/l			
Zinc, Diss		7.0	1.7	10	ug/l	1	07/12/23	J
Zinc, Tota	al	16	1.7	10	ug/l	1	07/12/23	
Method: EP	A 245.1			Instr: HG03				
Batch ID:		Preparation: EPA 245.1	0.007	Prepared: 07/			07/40/00	Analyst: KVM
Mercury, I		ND ND	0.037	0.050	ug/l	1	07/12/23	
Mercury, ⁻	Iotal	ND	0.037	0.050	ug/l	1	07/12/23	
	Organics - Low Level by GC/MS SI	M Mode						
Method: EP.				Instr: GCMS06				
Batch ID:		Preparation: EPA 625/L-L SF	0.024	Prepared: 07/0		4	07/44/02	Analyst: rmr
	naphthalene	ND ND	0.024	0.10	ug/l	1	07/14/23	
-	naphthalene	ND	0.026	0.10	ug/l	1	07/14/23	
3F27060								Page 10 of 29

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 **Project Number:** 5025-22-0004

Project Manager: Brenda Stevens

Reported:

08/25/2023 11:53

(Continued)

Sample:	ARCAD_WA_CON_2223_D2_0)1			9	Sampled: 06	/27/23 11:15 by	y Luis De La Torre	
	3F27060-03 (Water)							(Continued)	
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifier	
emivolatile C	Organics - Low Level by GC/MS SI	M Mode (Continued)							
Method: EPA	A 625.1			Instr: GCMS06					
Batch ID: \	W3G0052	Preparation: EPA 625/L-L SF		Prepared: 07/0	3/23 09:26			Analyst: rmr	
Acenaphth	nene	ND	0.028	0.10	ug/l	1	07/14/23		
Acenaphth	nylene	ND	0.033	0.10	ug/l	1	07/14/23		
Anthracen	e	ND	0.025	0.10	ug/l	1	07/14/23		
Benzo (a)	anthracene	ND	0.051	0.10	ug/l	1	07/14/23		
Benzo (a)	pyrene	ND	0.051	0.10	ug/l	1	07/14/23		
Benzo (b)	fluoranthene	ND	0.074	0.10	ug/l	1	07/14/23		
Benzo (g,ł	h,i) perylene	ND	0.050	0.10	ug/l	1	07/14/23		
Benzo (k)	fluoranthene	ND	0.059	0.10	ug/l	1	07/14/23		
Chrysene		ND	0.074	0.10	ug/l	1	07/14/23		
Dibenzo (a	a,h) anthracene	ND	0.081	0.10	ug/l	1	07/14/23		
Fluoranthe	ene	ND	0.039	0.10	ug/l	1	07/14/23		
Fluorene		ND	0.029	0.10	ug/l	1	07/14/23		
Indeno (1,	2,3-cd) pyrene	ND	0.065	0.10	ug/l	1	07/14/23		
Naphthale	ne	ND	0.026	0.10	ug/l	1	07/14/23		
Phenanthr	rene	ND	0.029	0.10	ug/l	1	07/14/23		
Pyrene		ND	0.040	0.10	ug/l	1	07/14/23		
Surrogate(s)									
2-Fluorobi	iphenyl	64%	Conc: 3.10	22-120			07/14/23		
Nitrobenze	ene-d5	61%	Conc: 2.94	47-120			07/14/23		
Terphenyl-	-d14	39%	Conc: 1.88	44-129			07/14/23	S-11	

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 **Project Number:** 5025-22-0004

Project Manager: Brenda Stevens

Reported:

08/25/2023 11:53

5

Sample Results

Sample:	F-193B-R_2223_D2_03					Sampled: (06/27/23 9:21 by L	uis De La Torre
	3F27060-04 (Water)							
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualific
nventional	Chemistry/Physical Parameters	by APHA/EPA/ASTM Methods						
Method: Cal	culation			Instr: [CALC]				
Batch ID: [[CALC]	Preparation: [CALC]		Prepared: 07/14	4/23 15:08			Analyst: YM
Nitrogen,	Total	ND	0.036	0.10	mg/l	1	07/18/23	
Method: EPA	A 350.1			Instr: AA06				
Batch ID: \	W3G0867	Preparation: _NONE (WETCHEM)		Prepared: 07/12	2/23 11:49			Analyst: YM
Ammonia	as N	0.086	0.017	0.10	mg/l	1	07/14/23	
Method: EPA	A 351.2			Instr: AA06				
Batch ID: \	W3G1099	Preparation: _NONE (WETCHEM)		Prepared: 07/14	4/23 15:08			Analyst: YM
TKN		ND	0.065	0.10	mg/l	1	07/18/23	
Method: EPA	A 353.2			Instr: AA01				
Batch ID: \	W3F2286	Preparation: _NONE (WETCHEM)		Prepared: 06/27	7/23 14:09			Analyst: ym
Nitrate as	N	ND	0.040	0.20	mg/l	1	06/27/23 21:33	
Nitrite as N	N	ND	42	100	ug/l	1	06/27/23 21:33	
NO2+NO3	as N	ND	36	200	ug/l	1	06/27/23	
Method: SM	2540C			Instr: OVEN17				
Batch ID: \		Preparation: _NONE (WETCHEM)		Prepared: 06/27	7/23 18:43			Analyst: be
Total Diss	olved Solids	7.0	4.0	10	mg/l	1	06/28/23	•
Method: SM	2540D			Instr: OVEN15				
Batch ID: \	W3F2487	Preparation: _NONE (WETCHEM)		Prepared: 06/29	9/23 09:43			Analyst: me
Total Susp	pended Solids	0.1		5	mg/l	1	06/29/23	•
exavalent Ch	nromium by IC							
Method: EPA	A 218.6			Instr: LC13				
Batch ID: \	W3G0518	Preparation: _NONE (LC)		Prepared: 07/10	0/23 10:11			Analyst: CL
Chromium	n 6+	0.080	0.0079	0.020	ug/l	1	07/10/23	
Chromium	n 6+, Dissolved	0.023	0.0079	0.020	ug/l	1	07/10/23	
letals by EPA	200 Series Methods							
Method: Cal				Instr: [CALC]				
Batch ID: [Preparation: [CALC]		Prepared: 07/11	1/23 11:03			Analyst: kvm
	as CaCO3, Total	ND	0.344	3.31	mg/l	1	07/13/23	,
Method: EPA	A 200.7			Instr: ICP03				
Batch ID: \		Preparation: EPA 200.2		Prepared: 07/11	1/23 11:03			Analyst: kvn
Calcium, T		ND	0.0736	0.500	mg/l	1	07/13/23	, ,
Magnesiur	m, Total	ND	0.0390	0.500	mg/l	1	07/13/23	
Phosphoru	us, Dissolved	ND	0.018	0.050	mg/l	1	07/13/23	
Phosphoru	us, Total	ND	0.018	0.050	mg/l	1	07/13/23	
Method: EPA	A 200 8			Instr: ICPMS06				
Batch ID: \		Proparation: EDA 200.2			1/23 12-50			Analusti tu
	, Dissolved	Preparation: EPA 200.2	4.4	Prepared: 07/11	ug/l	1	07/12/23	Analyst: tyo
					J			
F27060								Page 12 o

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 **Project Number:** 5025-22-0004

Reported:

08/25/2023 11:53

(Continued)

Sample Results

Project Manager: Brenda Stevens

Sample:	F-193B-R_2223_D2_03					Sampled: 0	6/27/23 9:21 by	Luis De La Torre
	3F27060-04 (Water)							(Continued)
Analyte		Resul	t MDL	MRL	Units	Dil	Analyzed	Qualifie
etals by EPA	A 200 Series Methods (Continue	d)						
Method: EPA	A 200.8			Instr: ICPMS06	5			
Batch ID: \		Preparation: EPA 200.2		Prepared: 07/		4	07/40/00	Analyst: tyc
Aluminum		NE		20	ug/l	1	07/12/23	
•		NE		0.50	ug/l	1	07/12/23	
Antimony,		NE		0.50	ug/l	1	07/12/23	
Arsenic, D		NE		0.40	ug/l	1	07/12/23	
Arsenic, To		NE		0.40	ug/l	1	07/12/23	
Beryllium,		NE		0.10	ug/l	1	07/12/23	
Beryllium,		NE		0.10	ug/l	1	07/12/23	
Cadmium,	,	NE		0.20	ug/l	1	07/12/23	
Cadmium,	, Total	NE	0.042	0.20	ug/l	1	07/12/23	
Chromium	n, Dissolved	NE	0.089	0.20	ug/l	1	07/12/23	
Chromiun	n, Total	0.10	0.089	0.20	ug/l	1	07/12/23	•
Copper, D	Dissolved	NE	0.23	0.50	ug/l	1	07/12/23	
Copper, To	otal	NE	0.23	0.50	ug/l	1	07/12/23	
Iron, Disso	olved	NE	3.9	20	ug/l	1	07/12/23	
Iron, Total		NE	3.9	20	ug/l	1	07/12/23	
Lead, Diss	solved	NE	0.083	0.20	ug/l	1	07/12/23	
Lead, Tota	al	NE	0.083	0.20	ug/l	1	07/12/23	
Nickel, Dis	ssolved	NE	0.16	2.0	ug/l	1	07/12/23	
Nickel, Tot	tal	NE	0.40	2.0	ug/l	1	07/12/23	
Selenium,	, Dissolved	NE	0.067	0.40	ug/l	1	07/12/23	
Selenium,	, Total	NE	0.067	0.40	ug/l	1	07/12/23	
Silver, Dis	ssolved	NE	0.030	0.20	ug/l	1	07/12/23	
Silver, Tota	al	NE	0.055	0.20	ug/l	1	07/12/23	
Thallium, I	Dissolved	NE	0.021	0.20	ug/l	1	07/12/23	
Thallium,	Total	NE	0.021	0.20	ug/l	1	07/12/23	
Zinc, Disse		NE		10	ug/l	1	07/12/23	
Zinc. Total		NE		10	ug/l	1	07/12/23	
,					~g/·	·	0.7.12/20	
Method: EPA		Programme FDA 245.1		Instr: HG03	10/22 16:26			A L 4 - 1/2 / A 4
Batch ID: \ Mercury, E		Preparation: EPA 245.1	0.037	Prepared: 07/ 0.050	ug/l	1	07/12/23	Analyst: KVM
Mercury, T		NE		0.050	ug/l	1	07/12/23	
•	Organics - Low Level by GC/MS S	SIM Mode			J			
Method: EPA		Jim mode		Instr: GCMS06				
Batch ID: \		Preparation: EPA 625/L-L SF		Prepared: 07/0				Analyst: rmr
	aphthalene	NE	0.024	0.10	ug/l	1	07/14/23	
	aphthalene	NE	0.026	0.10	ug/l	1	07/14/23	
F27060					J			Page 13 of

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 **Project Number:** 5025-22-0004

Project Manager: Brenda Stevens

Reported:

08/25/2023 11:53

(Continued)

Sample: F-193B-R_2223_D2_03					Sampled: 06	5/27/23 9:21 by	Luis De La Torre
3F27060-04 (Water)							(Continued)
Analyte	Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
Semivolatile Organics - Low Level by GC/MS SIM	Mode (Continued)						
Method: EPA 625.1			Instr: GCMS06				
Batch ID: W3G0052	Preparation: EPA 625/L-L SF		Prepared: 07/0	3/23 09:26			Analyst: rmr
Acenaphthene	ND	0.028	0.10	ug/l	1	07/14/23	
Acenaphthylene	ND	0.033	0.10	ug/l	1	07/14/23	
Anthracene	ND	0.025	0.10	ug/l	1	07/14/23	
Benzo (a) anthracene	ND	0.051	0.10	ug/l	1	07/14/23	
Benzo (a) pyrene	ND	0.051	0.10	ug/l	1	07/14/23	
Benzo (b) fluoranthene	ND	0.074	0.10	ug/l	1	07/14/23	
Benzo (g,h,i) perylene		0.050	0.10	ug/l	1	07/14/23	
Benzo (k) fluoranthene	ND	0.059	0.10	ug/l	1	07/14/23	
Chrysene		0.074	0.10	ug/l	1	07/14/23	
Dibenzo (a,h) anthracene	ND	0.081	0.10	ug/l	1	07/14/23	
Fluoranthene	ND	0.039	0.10	ug/l	1	07/14/23	
Fluorene		0.029	0.10	ug/l	1	07/14/23	
Indeno (1,2,3-cd) pyrene	ND	0.065	0.10	ug/l	1	07/14/23	
Naphthalene		0.026	0.10	ug/l	1	07/14/23	
Phenanthrene		0.029	0.10	ug/l	1	07/14/23	
Pyrene	ND	0.040	0.10	ug/l	1	07/14/23	
Surrogate(s)							
2-Fluorobiphenyl	74%	Conc: 3.48	22-120			07/14/23	
Nitrobenzene-d5	66%	Conc: 3.10	47-120			07/14/23	
Terphenyl-d14	82%	Conc: 3.90	44-129			07/14/23	

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123

F-193B-R_2223_D2_01

3F27060-01 (Water)

Project Number: 5025-22-0004

Reported:

Qualifier

08/25/2023 11:53

San Diego, CA 92123

Sample:

Analyte

Project Manager: Brenda Stevens

Sample Results McGlynn Laboratories, Inc. SUB_McGlynn

Sampled: 06/27/23 9:21 by Luis De La Torre

Analyzed

Conventional Chemistry/Physical Parameters by APHA/EPA/ASTM Methods

 Method: SM 10200H
 Batch ID: WL062723
 Prepared: 06/28/23 08:52
 Analyst: _SUB

 Chlorophyll-a
 5.1
 1
 ug/l
 1
 08/23/23

Result

MDL

MRL

Units

Dil

3F27060 Page 15 of 29

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 **Project Number:** 5025-22-0004

Project Manager: Brenda Stevens

Reported:

08/25/2023 11:53

San Diego, CA 92123

Analyte

Sample Results McGlynn Laboratories, Inc. SUB_McGlynn

(Continued)

Qualifier

Sample: F-194B-R_2223_D2_01 3F27060-02 (Water) Sampled: 06/27/23 10:20 by Luis De La Torre

Analyzed

Method: SM 10200H	Batch ID: WL062723		3/23 08:52			Analyst: _SUB
Chlorophyll-a	7.1	1	ua/l	1	08/23/23	

MDL

MRL

Units

Result

3F27060 Page 16 of 29

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 **Project Number:** 5025-22-0004

Project Manager: Brenda Stevens

Reported:

08/25/2023 11:53

Sar

Sample Results McGlynn Laboratories, Inc. SUB_McGlynn

(Continued)

Qualifier

Sample:

Analyte

ARCAD_WA_CON_2223_D2_01

3F27060-03 (Water)

Sampled: 06/27/23 11:15 by Luis De La Torre

Analyzed

Conventional Chemistry/Physical Parameters by APHA/EPA/ASTM Methods

 Method: SM 10200H
 Batch ID: WL062723
 Prepared: 06/28/23 08:52
 Analyst: _SUB

Result

MDL

MRL

Units

Dil

 Chlorophyll-a
 14.6
 1
 ug/l
 1
 08/23/23

Dil

Units

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A **Project Number:** 5025-22-0004

Project Manager: Brenda Stevens

Reported:

08/25/2023 11:53

San Diego, CA 92123

Sample Results McGlynn Laboratories, Inc. SUB_McGlynn

(Continued)

Qualifier

Sample:

Analyte

F-193B-R_2223_D2_03

3F27060-04 (Water)

Sampled: 06/27/23 9:21 by Luis De La Torre

Analyzed

Conventional Chemistr	/Physical Paramet	ters by APHA/EPA/ASTM Methods	

Method: SM 10200H	Batch ID: WL062723	Prepared: 06/2	8/23 08:52			Analyst: _SUB
Chlorophyll-a	0.5	1	ua/l	1	08/23/23	

MDL

MRL

Result

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123

Batch: W3F2327 - SM 2540C Blank (W3F2327-BLK1)

Total Dissolved Solids

Project Number: 5025-22-0004

Project Manager: Brenda Stevens

Reported:

08/25/2023 11:53

Quality Control Regults

Quality Control Results											
Conventional Chemistry/Physical Parameters by APHA/	'EPA/AST	M Method	S								
					Spike	Source		%REC		RPD	
Analyte	Result		MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
Batch: BATCH-B - SM 10200H											
	Source: T	RUE			Prepared	& Analyzed	:				
Chlorophyll-a	ND		1	ug/l		TRUE		0-0		0	
LCS (BATCH-BS1 (Water))	Source: T	RUE			Prepared	& Analyzed	:				
Chlorophyll-a	ND		1	ug/l		TRUE		70-112		20	
Quality Control Results											
Conventional Chemistry/Physical Parameters by APHA/	'EPA/AST	M Method	S								
					Spike	Source	0/ DEC	%REC		RPD	0 115
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
Batch: W3F2286 - EPA 353.2											
Blank (W3F2286-BLK1) Nitrate as N	ND	0.040	0.15	mg/l	Prepared & A	nalyzed: 06/	27/23				
Nitrite as N		42	100	ug/l							
NO2+NO3 as N		36	200	ug/l							
NOZTNOS as N	IND	30	200	ug/i							
LCS (W3F2286-BS1)					Prepared & A	nalyzed: 06/					
Nitrate as N		0.040	0.15	mg/l	1.00		108	90-110			
Nitrite as N		42	100	ug/l	1000		98	90-110			
NO2+NO3 as N	- 1080	36	200	ug/l	1000		108	90-110			
Matrix Spike (W3F2286-MS1)	Source: 3	F23002-02			Prepared & A	nalyzed: 06/2	27/23				
Nitrate as N		0.040	0.15	mg/l	2.00	8.52	104	90-110			
Nitrite as N	971	42	100	ug/l	1000	ND	97	90-110			
NO2+NO3 as N	10600	36	200	ug/l	2000	8520	104	90-110			
Matrix Spike (W3F2286-MS2)	Source: 3	F26066-21			Prepared & A	nalyzed: 06/2	27/23				
Nitrate as N	- 10.1	0.040	0.15	mg/l	2.00	7.96	107	90-110			
Nitrite as N	999	42	100	ug/l	1000	ND	100	90-110			
NO2+NO3 as N	10100	36	200	ug/l	2000	7960	107	90-110			
Matrix Spike Dup (W3F2286-MSD1)	Source: 3	F23002-02			Prepared & A	nalvzed: 06/2	27/23				
Nitrate as N		0.040	0.15	mg/l	2.00	8.52	99	90-110	0.9	20	
Nitrite as N	- 976	42	100	ug/l	1000	ND	98	90-110	0.5	20	
NO2+NO3 as N	10500	36	200	ug/l	2000	8520	99	90-110	0.9	20	
Matrix Spike Dup (W3F2286-MSD2)	Source: 2	F26066-21			Prepared & A	nalyzod: 067	77/22				
Nitrate as N		0.040	0.15	mg/l	2.00	7.96	107	90-110	0	20	
Nitrite as N	- 1000	42	100	ug/l	1000	ND	100	90-110	0.1	20	
NO2+NO3 as N	10100	36	200	ug/l	2000	7960	107	90-110	0	20	

LCS (W3F2327-BS1) **Total Dissolved Solids** 810 4.0 10 824 mg/l

4.0

ND

Prepared: 06/27/23 Analyzed: 06/28/23 97-103

3F27060 Page 19 of 29

10

Prepared: 06/27/23 Analyzed: 06/28/23

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123

Project Number: 5025-22-0004

Project Manager: Brenda Stevens

Reported:

08/25/2023 11:53

Quality Control Results

Conventional Chemistry/Physical Parameters	by Allia, Elia, Asti	vi ivietilous	(Continue)	a)	C 11	C		0/ DEC		222	
Analyte	Result	MDL	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
atch: W3F2327 - SM 2540C (Continued)											
Duplicate (W3F2327-DUP1)	Source: 3F	14097-01		Pi	repared: 06/27/2	3 Analyzed	: 06/28/23				
Total Dissolved Solids	529	4.0	10	mg/l		535			1	10	
Duplicate (W3F2327-DUP2)	Source: 3F	16026-05		Pı	repared: 06/27/2	3 Analyzed	: 06/28/23				
Total Dissolved Solids	492	4.0	10	mg/l		497			1	10	
atch: W3F2444 - SM 2540C											
Blank (W3F2444-BLK1)				Pi	repared: 06/28/2	3 Analyzed	: 06/29/23				
Total Dissolved Solids	ND	4.0	10	mg/l							
LCS (W3F2444-BS1)				Pi	repared: 06/28/2	3 Analyzed	: 06/29/23				
Total Dissolved Solids	821	4.0	10	mg/l	824		100	97-103			
Duplicate (W3F2444-DUP1)	Source: 3F	28003-02		Pi	repared: 06/28/2	3 Analyzed	: 06/29/23				
Total Dissolved Solids	11000	4.0	10	mg/l		10900			0.3	10	
Duplicate (W3F2444-DUP2)	Source: 3F	28101-19		Pi	repared: 06/28/2	3 Analyzed	: 06/29/23				
Total Dissolved Solids	53000	4.0	10	mg/l		52400			1	10	
atch: W3F2487 - SM 2540D											
Blank (W3F2487-BLK1)					Prepared & A	nalyzed: 06/	29/23				
Total Suspended Solids	ND		1	mg/l		•					
LCS (W3F2487-BS1)					Prepared & A	nalyzed: 06/	29/23				
Total Suspended Solids	50.7		1	mg/l	52.5	•	97	90-110			
Duplicate (W3F2487-DUP1)	Source: 3F	27013-01			Prepared & A	nalyzed: 06/	29/23				
Total Suspended Solids	34.0		1	mg/l		36.5			7	10	
Duplicate (W3F2487-DUP2)	Source: 3F	28004-30			Prepared & A	nalyzed: 06/	29/23				
Total Suspended Solids	23.3		1	mg/l		21.1			10	10	
atch: W3G0867 - EPA 350.1											
Blank (W3G0867-BLK1)				Pi	repared: 07/12/2	3 Analyzed	: 07/14/23				
Ammonia as N	ND	0.017	0.10	mg/l							
Blank (W3G0867-BLK2)				Pi	repared: 07/12/2	3 Analyzed	: 07/14/23				
Ammonia as N	ND	0.017	0.10	mg/l							
LCS (W3G0867-BS1)				Pi	repared: 07/12/2	3 Analyzed	: 07/14/23				
Ammonia as N	0.244	0.017	0.10	mg/l	0.250		98	90-110			
LCS (W3G0867-BS2)				Pi	repared: 07/12/2	3 Analyzed	: 07/14/23				
Ammonia as N	0.246	0.017	0.10	mg/l	0.250		98	90-110			
Matrix Spike (W3G0867-MS1)	Source: 3F	16026-12		Pi	repared: 07/12/2	3 Analyzed	: 07/14/23				
Ammonia as N	0.471	0.017	0.10	mg/l	0.250	0.227	98	90-110			
Matrix Spike (W3G0867-MS2)	Source: 3F	27060-04		Pi	repared: 07/12/2	3 Analyzed	: 07/14/23				
Ammonia as N	0.331	0.017	0.10	mg/l	0.250	0.0861	98	90-110			
Matrix Spike Dup (W3G0867-MSD1)	Source: 3F	16026-12		Pi	repared: 07/12/2	3 Analyzed	: 07/14/23				
Ammonia as N	0.474	0.017	0.10	mg/l	0.250	0.227	99	90-110	0.7	15	

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123

Project Number: 5025-22-0004

Project Manager: Brenda Stevens

Reported:

08/25/2023 11:53

3F27060

Quality Control Results

(Continued)

Page 21 of 29

Conventional Chemistry/Physical Parameters by APH	A/EPA/AST	TM Methods	s (Continue	d)							
					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualific
atch: W3G0867 - EPA 350.1 (Continued)											
Matrix Spike Dup (W3G0867-MSD2)	Source: 3	F27060-04		Pre	pared: 07/12/23	Analyzed:	07/14/23				
Ammonia as N	0.328	0.017	0.10	mg/l	0.250	0.0861	97	90-110	0.9	15	
atch: W3G1099 - EPA 351.2											
Blank (W3G1099-BLK1)				Pre	pared: 07/14/23	Analyzed:	: 07/18/23				
TKN	ND	0.065	0.10	mg/l							
Blank (W3G1099-BLK2)				Pre	pared: 07/14/23	Analyzed:	: 07/18/23				
TKN	ND	0.065	0.10	mg/l		, ,					
LCS (W3G1099-BS1)				Pre	pared: 07/14/23	Analyzed:	07/18/23				
TKN	0.948	0.065	0.10	mg/l	1.00	7u.y_cu.	95	90-110			
LCS (W3G1099-BS2)				Droi	pared: 07/14/23	Analyzod	. 07/18/23				
TKN	- 0.944	0.065	0.10	mg/l	1.00	Allalyzeu	94	90-110			
Durling (MACCIONO DURI)		F20072 04		D			07/40/22				
Duplicate (W3G1099-DUP1) TKN	- 0.445	0.065	0.10	mg/l	pared: 07/14/23	0.444	07/18/23		0.1	10	
Matrix Spike (W3G1099-MS1) TKN		0.065	0.10	Pre _l mg/l	pared: 07/14/23 1.00	Analyzed: 0.0768	: 07/18/23 91	90-110			
			00	9,.		0.0.00					
Matrix Spike (W3G1099-MS2) TKN		0.065	0.10	Pre _l mg/l	pared: 07/14/23 1.00	Analyzed: ND	: 07/18/23 96	90-110			
INN	0.551	0.003	0.10	mg/i	1.00	ND	30	30-110			
Matrix Spike Dup (W3G1099-MSD1) TKN		0.065	0.10		pared: 07/14/23 1.00	Analyzed: 0.0768	91	90-110	0.1	10	
INN	0.990	0.003	0.10	mg/l	1.00	0.0700	91	90-110	0.1	10	
Matrix Spike Dup (W3G1099-MSD2) TKN	Source: 3 - 0.930	0.065	0.10		pared: 07/14/23 1.00	Analyzed: ND	93	90-110	3	10	
	0.930	0.005	0.10	mg/l	1.00	ND	93	90-110	3		4:
Quality Control Results										(Cc	ontinued
Hexavalent Chromium by IC											
					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualific
atch: W3G0518 - EPA 218.6											
Blank (W3G0518-BLK1)					Prepared & Ana	alyzed: 07/	10/23				
Chromium 6+		0.0079	0.020	ug/l							
Chromium 6+, Dissolved	ND	0.0079	0.020	ug/l							
LCS (W3G0518-BS1)					Prepared & Ana	alyzed: 07/	10/23				
Chromium 6+	5.31	0.0079	0.020	ug/l	5.00		106	90-110			
Chromium 6+, Dissolved	5.31	0.0079	0.020	ug/l	5.00		106	90-110			
Matrix Spike (W3G0518-MS1)	Source: 3	F27060-01			Prepared & Ana	alyzed: 07/	10/23				
Chromium 6+	6.75	0.0079	0.020	ug/l	5.00	2.11	93	88-112			
Chromium 6+, Dissolved	6.75	0.0079	0.020	ug/l	5.00	2.07	94	88-112			
Matrix Spike Dup (W3G0518-MSD1)	Source: 3	F27060-01			Prepared & Ana	alyzed: 07/	10/23				
Chromium 6+		0.0079	0.020	ug/l	5.00	2.11	88	88-112	4	10	
Oli oli idili o				•							

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 **Project Number:** 5025-22-0004

Project Manager: Brenda Stevens

Reported:

08/25/2023 11:53

3F27060

Quality Control Results

(Continued)

Page 22 of 29

Metals by EPA 200 Series Methods											
Analysis	Result	MDL	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualific
Analyte etch: W3G0571 - EPA 245.1	Result	MDL	IVIKL	Onits	Level	Result	/orec	Lilling	KPD	LIIIII	Quaiiii
Blank (W3G0571-BLK1)				Pre	pared: 07/10/2	3 Analyzed	07/12/23	:			
Mercury, Dissolved	ND	0.037	0.050	ug/l	parea. 07/10/2	5 Analyzea	07,12,23	•			
Mercury, Total	ND	0.037	0.050	ug/l							
LCS (W3G0571-BS1)				Pre	pared: 07/10/2	3 Analyzed	07/12/23	3			
Mercury, Dissolved	- 1.07	0.037	0.050	ug/l	1.00		107	85-115			
Mercury, Total	- 1.07	0.037	0.050	ug/l	1.00		107	85-115			
Matrix Spike (W3G0571-MS1)	ource: 3	F21012-03		Pre	pared: 07/10/2	3 Analyzed:	07/12/23	3			
Mercury, Dissolved	- 1.16	0.037	0.050	ug/l	1.00	ND	116	70-130			
Mercury, Total	- 1.16	0.037	0.050	ug/l	1.00	ND	116	70-130			
, ,		F28078-01			pared: 07/10/2	-					
Mercury, Dissolved		0.037	0.050	ug/l	1.00	ND	99	70-130			
Mercury, Total	0.991	0.037	0.050	ug/l	1.00	ND	99	70-130			
		F21012-03		Pre	pared: 07/10/2	-		3			
Mercury, Dissolved	- 1.22	0.037	0.050	ug/l	1.00	ND	122	70-130	6	20	
Mercury, Total	- 1.22	0.037	0.050	ug/l	1.00	ND	122	70-130	6	20	
• • •		F28078-01		Pre	pared: 07/10/2	-					
Mercury, Dissolved	0.990	0.037	0.050	ug/l	1.00	ND	99	70-130	0.1	20	
Mercury, Total	0.990	0.037	0.050	ug/l	1.00	ND	99	70-130	0.1	20	
etch: W3G0695 - EPA 200.7											
Blank (W3G0695-BLK1)					pared: 07/11/2	3 Analyzed	07/13/23	3			
Calcium, Total		0.0736	0.500	mg/l							
Magnesium, Total		0.0390	0.500	mg/l							
Phosphorus, Dissolved		0.018	0.050	mg/l							
Phosphorus, Total	ND	0.018	0.050	mg/l							
LCS (W3G0695-BS1)					pared: 07/11/2	3 Analyzed					
Calcium, Total		0.0736	0.500	mg/l	50.2		99	85-115			
Magnesium, Total	48.8	0.0390	0.500	mg/l	50.2		97	85-115			
Phosphorus, Dissolved	2.14	0.018	0.050	mg/l	2.00		107	85-115			
Phosphorus, Total	2.14	0.018	0.050	mg/l	2.00		107	85-115			
, ,		F23016-01	0.500		pared: 07/11/2	-					
Calcium, Total	180	0.0736	0.500	mg/l	50.2	134	90	70-130			
Magnesium, Total		0.0390	0.500	mg/l	50.2	27.5	96	70-130			
Phosphorus, Dissolved		0.018	0.050	mg/l	2.00	3.10	108	70-130			
Phosphorus, Total	- 5.25	0.018	0.050	mg/l	2.00	3.10	108	70-130			
•		F28043-02	0.500		pared: 07/11/2	•					
Calcium, Total		0.0736	0.500	mg/l	50.2	97.2	88	70-130			
Magnesium, Total		0.0390	0.500	mg/l	50.2	41.0	93	70-130			
Phosphorus, Dissolved	5.32	0.018	0.050	mg/l	2.00	3.24	104	70-130			
Phosphorus, Total	5.32	0.018	0.050	mg/l	2.00	3.24	104	70-130			

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 **Project Number:** 5025-22-0004

Project Manager: Brenda Stevens

Reported:

08/25/2023 11:53

Quality Control Results

Metals by EPA 200 Series Methods (Continued)											
					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
Batch: W3G0695 - EPA 200.7 (Continued)											
		3F23016-01	0.500		pared: 07/11/2	-			0.2	20	
Calcium, Total Magnesium, Total		0.0736 0.0390	0.500	mg/l	50.2	134	92	70-130	0.3	30 30	
			0.500	mg/l	50.2 2.00	27.5	97	70-130	0.5 0.5	30	
Phosphorus, Dissolved Phosphorus, Total		0.018	0.050	mg/l		3.10	109	70-130			
Phosphorus, Iotal	5.27	0.018	0.050	mg/l	2.00	3.10	109	70-130	0.5	30	
		8F28043-02	0.500		pared: 07/11/2						
Calcium, Total		0.0736	0.500	mg/l	50.2	97.2	90	70-130	0.7	30	
Magnesium, Total		0.0390	0.500	mg/l	50.2	41.0	94	70-130	0.4	30	
Phosphorus, Dissolved		0.018	0.050	mg/l	2.00	3.24	106	70-130	0.7	30	
Phosphorus, Total	5.36	0.018	0.050	mg/l	2.00	3.24	106	70-130	0.7	30	
Batch: W3G0711 - EPA 200.8											
Blank (W3G0711-BLK1)				Pre	pared: 07/11/2	23 Analyzed:	07/12/2	3			
Aluminum, Dissolved	ND	4.4	20	ug/l							
Aluminum, Total	ND	4.4	20	ug/l							
Antimony, Dissolved	ND	0.089	0.50	ug/l							
Antimony, Total		0.089	0.50	ug/l							
Arsenic, Dissolved	ND	0.074	0.40	ug/l							
Arsenic, Total	ND	0.074	0.40	ug/l							
Beryllium, Dissolved	ND	0.062	0.10	ug/l							
Beryllium, Total	ND	0.029	0.10	ug/l							
Cadmium, Dissolved	ND	0.042	0.20	ug/l							
Cadmium, Total	ND	0.042	0.20	ug/l							
Chromium, Dissolved	ND	0.089	0.20	ug/l							
Chromium, Total	ND	0.089	0.20	ug/l							
Copper, Dissolved	ND	0.23	0.50	ug/l							
Copper, Total	ND	0.23	0.50	ug/l							
Iron, Dissolved	ND	3.9	20	ug/l							
Iron, Total	ND	3.9	20	ug/l							
Lead, Dissolved	ND	0.083	0.20	ug/l							
Lead, Total	ND	0.083	0.20	ug/l							
Nickel, Dissolved	ND	0.16	2.0	ug/l							
Nickel, Total	ND	0.40	2.0	ug/l							
Selenium, Dissolved	ND	0.067	0.40	ug/l							
Selenium, Total	ND	0.067	0.40	ug/l							
Silver, Dissolved	ND	0.030	0.20	ug/l							
Silver, Total	ND	0.055	0.20	ug/l							
Thallium, Dissolved	ND	0.021	0.20	ug/l							
Thallium, Total	ND	0.021	0.20	ug/l							
Zinc, Dissolved	ND	1.7	10	ug/l							
Zinc, Total	ND	1.7	10	ug/l							
F27060											Page 23 of

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 **Project Number:** 5025-22-0004

Project Manager: Brenda Stevens

Reported:

08/25/2023 11:53

Quality Control Results

Metals by EPA 200 Series Methods (Continued)											
					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
atch: W3G0711 - EPA 200.8 (Continued)											
Blank (W3G0711-BLK1)				Pre	pared: 07/11/2	3 Analyzed:	07/12/2	3			
LCS (W3G0711-BS1)					pared: 07/11/2	3 Analyzed:					
Aluminum, Dissolved	51.3	4.4	20	ug/l	50.0		103	85-115			
Aluminum, Total		4.4	20	ug/l	50.0		103	85-115			
Antimony, Dissolved		0.089	0.50	ug/l	50.0		100	85-115			
Antimony, Total	50.1	0.089	0.50	ug/l	50.0		100	85-115			
Arsenic, Dissolved	50.7	0.074	0.40	ug/l	50.0		101	85-115			
Arsenic, Total	50.7	0.074	0.40	ug/l	50.0		101	85-115			
Beryllium, Dissolved	48.7	0.062	0.10	ug/l	50.0		97	85-115			
Beryllium, Total	48.7	0.029	0.10	ug/l	50.0		97	85-115			
Cadmium, Dissolved	49.6	0.042	0.20	ug/l	50.0		99	85-115			
Cadmium, Total	49.6	0.042	0.20	ug/l	50.0		99	85-115			
Chromium, Dissolved	50.8	0.089	0.20	ug/l	50.0		101	85-115			
Chromium, Total	50.8	0.089	0.20	ug/l	50.0		101	85-115			
Copper, Dissolved	51.3	0.23	0.50	ug/l	50.0		102	85-115			
Copper, Total	51.3	0.23	0.50	ug/l	50.0		102	85-115			
Iron, Dissolved	1150	3.9	20	ug/l	1050		110	85-115			
Iron, Total	1150	3.9	20	ug/l	1050		110	85-115			
Lead, Dissolved	50.4	0.083	0.20	ug/l	50.0		101	85-115			
Lead, Total	50.4	0.083	0.20	ug/l	50.0		101	85-115			
Nickel, Dissolved	51.2	0.16	2.0	ug/l	50.0		102	85-115			
Nickel, Total	51.2	0.40	2.0	ug/l	50.0		102	85-115			
Selenium, Dissolved	50.0	0.067	0.40	ug/l	50.0		100	85-115			
Selenium, Total	50.0	0.067	0.40	ug/l	50.0		100	85-115			
Silver, Dissolved	49.7	0.030	0.20	ug/l	50.0		99	85-115			
Silver, Total	49.7	0.055	0.20	ug/l	50.0		99	85-115			
Thallium, Dissolved	50.1	0.021	0.20	ug/l	50.0		100	85-115			
Thallium, Total	50.1	0.021	0.20	ug/l	50.0		100	85-115			
Zinc, Dissolved	51.0	1.7	10	ug/l	50.0		102	85-115			
Zinc, Total	51.0	1.7	10	ug/l	50.0		102	85-115			
Matrix Spike (W3G0711-MS1)	nirco. 3	F27060-02		Dro	pared: 07/11/2	3 Analyzed	07/12/2	2			
Aluminum, Total	- 328	4.4	20	ug/l	50.0	268	119	70-130			
Antimony, Total	51.7	0.089	0.50	ug/l	50.0	0.683	102	70-130			
Arsenic, Total	54.3	0.074	0.40	ug/l	50.0	2.60	103	70-130			
Beryllium, Total	50.6	0.029	0.10	ug/l	50.0	ND	101	70-130			
Cadmium, Total	50.0	0.042	0.20	ug/l	50.0	ND	100	70-130			
Chromium, Total	50.7	0.089	0.20	ug/l	50.0	0.530	100	70-130			
Copper, Total	53.2	0.23	0.50	ug/l	50.0	2.56	101	70-130			
Iron, Total	1490	3.9	20	ug/l	1050	323	111	70-130			
Lead, Total		0.083	0.20	ug/l	50.0	0.852	101	70-130			
27060	-		-	J	*						Page 24 c

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 **Project Number:** 5025-22-0004

Project Manager: Brenda Stevens

Reported:

08/25/2023 11:53

Quality Control Results

Metals by EPA 200 Series Methods (Continue	ed)										
					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
etch: W3G0711 - EPA 200.8 (Continued)											
Matrix Spike (W3G0711-MS1)		F27060-02			pared: 07/11/2	-					
Nickel, Total		0.40	2.0	ug/l	50.0	0.458	101	70-130			
Selenium, Total		0.067	0.40	ug/l	50.0	0.166	98	70-130			
Silver, Total		0.055	0.20	ug/l	50.0	ND	99	70-130			
Thallium, Total		0.021	0.20	ug/l	50.0	ND	100	70-130			
Zinc, Total	52.5	1.7	10	ug/l	50.0	3.30	98	70-130			
Matrix Spike (W3G0711-MS2)		F30108-01	20		pared: 07/11/2	-					
Antimony Total		4.4	20	ug/l	50.0	73.6	97	70-130			
Antimony, Total		0.089	0.50	ug/l	50.0	0.378	102	70-130			
Arsenic, Total		0.074	0.40	ug/l	50.0	0.545	100	70-130			
Beryllium, Total	00.0	0.029	0.10	ug/l	50.0	0.0689	117	70-130			
Cadmium, Total		0.042	0.20	ug/l	50.0	ND	91	70-130			
Chromium, Total	020	0.089	0.20	ug/l	50.0	596	58	70-130			MS-0
Copper, Total		0.23	0.50	ug/l	50.0	4.53	80	70-130			
Iron, Total	33800	3.9	20	ug/l	1050	34000	NR	70-130			MS-0
Lead, Total	51.4	0.083	0.20	ug/l	50.0	ND	103	70-130			
Nickel, Total		0.40	2.0	ug/l	50.0	5420	NR	70-130			MS-
Selenium, Total	46.9	0.067	0.40	ug/l	50.0	0.257	93	70-130			
Silver, Total	43.9	0.055	0.20	ug/l	50.0	ND	88	70-130			
Thallium, Total	51.3	0.021	0.20	ug/l	50.0	ND	103	70-130			
Zinc, Total	146	1.7	10	ug/l	50.0	103	86	70-130			
Matrix Spike Dup (W3G0711-MSD1)	Source: 3	F27060-02		Pre	pared: 07/11/2	23 Analyzed:	07/12/2	3			
Aluminum, Total	319	4.4	20	ug/l	50.0	268	101	70-130	3	30	
Antimony, Total	51.8	0.089	0.50	ug/l	50.0	0.683	102	70-130	0.08	30	
Arsenic, Total	54.5	0.074	0.40	ug/l	50.0	2.60	104	70-130	0.3	30	
Beryllium, Total	52.1	0.029	0.10	ug/l	50.0	ND	104	70-130	3	30	
Cadmium, Total	49.7	0.042	0.20	ug/l	50.0	ND	99	70-130	0.4	30	
Chromium, Total	51.1	0.089	0.20	ug/l	50.0	0.530	101	70-130	0.7	30	
Copper, Total	52.9	0.23	0.50	ug/l	50.0	2.56	100	70-130	0.7	30	
Iron, Total	1450	3.9	20	ug/l	1050	323	107	70-130	2	30	
Lead, Total	51.4	0.083	0.20	ug/l	50.0	0.852	101	70-130	0.3	30	
Nickel, Total	50.5	0.40	2.0	ug/l	50.0	0.458	100	70-130	0.7	30	
Selenium, Total	49.2	0.067	0.40	ug/l	50.0	0.166	98	70-130	0.3	30	
Silver, Total	49.7	0.055	0.20	ug/l	50.0	ND	99	70-130	0.1	30	
Thallium, Total	50.4	0.021	0.20	ug/l	50.0	ND	101	70-130	0.4	30	
Zinc, Total	52.1	1.7	10	ug/l	50.0	3.30	98	70-130	0.7	30	
Matrix Spike Dup (W3G0711-MSD2)	Source: 3	F30108-01		Pre	pared: 07/11/2	23 Analyzed:	07/12/2	3			
Aluminum, Total	125	4.4	20	ug/l	50.0	73.6	102	70-130	2	30	
Antimony, Total	51.4	0.089	0.50	ug/l	50.0	0.378	102	70-130	0.2	30	
Arsenic, Total	49.8	0.074	0.40	ug/l	50.0	0.545	98	70-130	1	30	

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 **Project Number:** 5025-22-0004

Project Manager: Brenda Stevens

Reported:

08/25/2023 11:53

Metals by EPA 200 Series Methods (Continue	ed)										
					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
Batch: W3G0711 - EPA 200.8 (Continued)											
Matrix Spike Dup (W3G0711-MSD2)	Source: 3	F30108-01		Pre	pared: 07/11/2	23 Analyzed:	07/12/2	3			
Beryllium, Total	58.0	0.029	0.10	ug/l	50.0	0.0689	116	70-130	0.9	30	
Cadmium, Total	45.4	0.042	0.20	ug/l	50.0	ND	91	70-130	0.3	30	
Chromium, Total	631	0.089	0.20	ug/l	50.0	596	71	70-130	1	30	
Copper, Total	44.1	0.23	0.50	ug/l	50.0	4.53	79	70-130	1	30	
Iron, Total	34100	3.9	20	ug/l	1050	34000	11	70-130	1	30	MS-02
Lead, Total	51.2	0.083	0.20	ug/l	50.0	ND	102	70-130	0.3	30	
Nickel, Total	5140	0.40	2.0	ug/l	50.0	5420	NR	70-130	8.0	30	MS-02
Selenium, Total	47.3	0.067	0.40	ug/l	50.0	0.257	94	70-130	1	30	
Silver, Total	43.7	0.055	0.20	ug/l	50.0	ND	87	70-130	0.4	30	
Thallium, Total	51.4	0.021	0.20	ug/l	50.0	ND	103	70-130	0.06	30	
Zinc, Total	145	1.7	10	ug/l	50.0	103	83	70-130	0.9	30	

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 **Project Number:** 5025-22-0004

Project Manager: Brenda Stevens

Reported:

08/25/2023 11:53

Quality Control Results

					Cu!l	Ca		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Spike Level	Source Result	%REC	Limits	RPD	Limit	Qualif
tch: W3G0052 - EPA 625.1											
Blank (W3G0052-BLK1)				Pre	pared: 07/03/2	3 Analyzed:	07/14/23	3			
1-Methylnaphthalene	- ND	0.024	0.10	ug/l							
2-Methylnaphthalene	- ND	0.026	0.10	ug/l							
Acenaphthene	- ND	0.028	0.10	ug/l							
Acenaphthylene	- ND	0.033	0.10	ug/l							
Anthracene	- ND	0.025	0.10	ug/l							
Benzo (a) anthracene	- ND	0.051	0.10	ug/l							
Benzo (a) pyrene	- ND	0.051	0.10	ug/l							
Benzo (b) fluoranthene	- ND	0.074	0.10	ug/l							
Benzo (g,h,i) perylene	- ND	0.050	0.10	ug/l							
Benzo (k) fluoranthene	- ND	0.059	0.10	ug/l							
Chrysene	- ND	0.074	0.10	ug/l							
Dibenzo (a,h) anthracene	- ND	0.081	0.10	ug/l							
Fluoranthene	- ND	0.039	0.10	ug/l							
Fluorene	- ND	0.029	0.10	ug/l							
Indeno (1,2,3-cd) pyrene	- ND	0.065	0.10	ug/l							
Naphthalene	- ND	0.026	0.10	ug/l							
Phenanthrene	- ND	0.029	0.10	ug/l							
Pyrene	- ND	0.040	0.10	ug/l							
urrogate(s) 2-Fluorobiphenvl	0.21			//	20.0			22.420			
,	*			ug/l	20.0		46 51	22-120 47-120			
	10.2			ug/l	20.0		51				_
Terphenyl-d14	4.54			ug/l	20.0		23	44-129			S
CS (W3G0052-BS1) 1-Methylnaphthalene	0.600	0.024	0.10		pared: 07/03/2 1.00	3 Analyzed:	07/14/2 3	0-200			
				ug/l							
,, __	0.603	0.026	0.10	ug/l	1.00		60	0-200			
	0.694	0.028	0.10	ug/l	1.00		69	60-132			
• ,	0.694	0.033	0.10	ug/l	1.00		69	54-126			
	0.831	0.025	0.10	ug/l	1.00		83	43-120			
Benzo (a) anthracene		0.051	0.10	ug/l	1.00		82	42-133			
Benzo (a) pyrene		0.051	0.10	ug/l	1.00		75	32-148			
Benzo (b) fluoranthene		0.074	0.10	ug/l	1.00		82	42-140			AN
Benzo (g,h,i) perylene		0.050	0.10	ug/l	1.00		70	0.1-195			
Benzo (k) fluoranthene		0.059	0.10	ug/l	1.00		85	25-146			AN
Chrysene		0.074	0.10	ug/l	1.00		85	44-140			
	0.638	0.081	0.10	ug/l	1.00		64	0.1-200			
Fluoranthene		0.039	0.10	ug/l	1.00		96	43-121			
Fluorene		0.029	0.10	ug/l	1.00		76	70-120			
Indeno (1,2,3-cd) pyrene	0.616	0.065	0.10	ug/l	1.00		62	0.1-151			
Naphthalene	0.618	0.026	0.10	ug/l	1.00		62	36-120			
27060											Page 27

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 **Project Number:** 5025-22-0004

Project Manager: Brenda Stevens

Reported:

08/25/2023 11:53

Q

Quality Control Results

Semivolatile Organics - Low Level by GC/MS SIM	Mode (Contin	ued)									
					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
atch: W3G0052 - EPA 625.1 (Continued)											
LCS (W3G0052-BS1)						23 Analyzed: 0	7/14/23				
Phenanthrene	0.000	0.029	0.10	ug/l	1.00		84	65-120			
Pyrene		0.040	0.10	ug/l	1.00		96	70-120			
Surrogate(s) 2-Fluorobiphenyl				ug/l	5.00		69	22-120			
Nitrobenzene-d5	3.23			ug/l	5.00		65	47-120			
Terphenyl-d14	4.26			ug/l	5.00		85	44-129			
LCS Dup (W3G0052-BSD1)				Pre	pared: 07/03/2	23 Analyzed: 0	7/14/23	3			
1-Methylnaphthalene	0.569	0.024	0.10	ug/l	1.00	, ,	57	0-200	5	200	
2-Methylnaphthalene	0.572	0.026	0.10	ug/l	1.00		57	0-200	5	200	
Acenaphthene	0.644	0.028	0.10	ug/l	1.00		64	60-132	8	30	
Acenaphthylene	0.642	0.033	0.10	ug/l	1.00		64	54-126	8	30	
Anthracene	0.740	0.025	0.10	ug/l	1.00		74	43-120	12	30	
Benzo (a) anthracene	0.736	0.051	0.10	ug/l	1.00		74	42-133	11	30	
Benzo (a) pyrene	0.603	0.051	0.10	ug/l	1.00		60	32-148	21	30	
Benzo (b) fluoranthene	0.694	0.074	0.10	ug/l	1.00		69	42-140	17	30	AN-I
Benzo (g,h,i) perylene	0.469	0.050	0.10	ug/l	1.00		47	0.1-195	39	30	Q-1
Benzo (k) fluoranthene	0.697	0.059	0.10	ug/l	1.00		70	25-146	19	30	AN-I
Chrysene	0.768	0.074	0.10	ug/l	1.00		77	44-140	11	30	
Dibenzo (a,h) anthracene	0.408	0.081	0.10	ug/l	1.00		41	0.1-200	44	30	Q-1
Fluoranthene	0.875	0.039	0.10	ug/l	1.00		87	43-121	9	30	
Fluorene	0.696	0.029	0.10	ug/l	1.00		70	70-120	9	30	
Indeno (1,2,3-cd) pyrene	0.455	0.065	0.10	ug/l	1.00		46	0.1-151	30	30	
Naphthalene	0.590	0.026	0.10	ug/l	1.00		59	36-120	5	30	
Phenanthrene	0.752	0.029	0.10	ug/l	1.00		75	65-120	11	30	
Pyrene		0.040	0.10	ug/l	1.00		88	70-120	9	30	
Surrogate(s) 2-Fluorobiphenyl				ug/l	5.00		65	22-120			
Nitrobenzene-d5	3.10			ug/l	5.00		62	47-120			
Terphenyl-d14	3.56			ug/l	5.00		71	44-129			

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 **Project Number:** 5025-22-0004

Project Manager: Brenda Stevens

Reported:

08/25/2023 11:53

Item

Notes and Definitions

AN-IP	Sample results for structural isomers may have contribution from their isomeric pair.
J	Estimated conc. detected <mrl and="">MDL.</mrl>
MS-02	The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte inherent in the sample.
Q-12	The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on the percent recoveries and/or other acceptable QC data.
S-11	Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.
%REC	Percent Recovery
Dil	Dilution
MDL	
MDL	Method Detection Limit
MRL	Method Detection Limit The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. The MRL is also known as Limit of Quantitation (LOQ)
	The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence.
MRL	The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. The MRL is also known as Limit of Quantitation (LOQ) NOT DETECTED at or above the Method Reporting Limit (MRL). If Method Detection Limit (MDL) is reported, then ND means not detected at or

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

All results are expressed on wet weight basis unless otherwise specified.

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

A	1		

Lab Notes:

To:

Page 1 of 3

WSP Environment & Infrastructure Solutio	ns	Weck Laboratories					
9177 Sky Park Court		14859 Clark Aver					
San Diego, CA 92123		Industry, CA 9174	5				
(661) 373-5505		(626) 336-2139					
(858) 278-5300 Fax		(626) 336-2634 F					
Contact: Brenda Stevens/Kimberly Henry PO#:	During a	Contact: Chris Sa	matmanakit	D. C. (No.	1 -		
	<u> </u>	t Number:		Project Name:	+	ole Matrix:	
C015102726	5025-	22-0004		SGVCOG Fire Effects Study	V\	/ater	
SampleID	Sample Date	Sample Time	Sample Type	Analysis	Container	Pres	No. of Bottles
F-193B-R_2223_D2_01	6/27/2023	0921	Grab	Chlorophyll-a (SM 10200H)	1-L Amber Poly	Unpres.	1 🖊
F-193B-R_2223_D2_01	6/27/2023	0921	Grab	Total Metals (EPA 200.8); Hardness (EPA 200.7); Total Phosphorus (EPA 200.7)	500-mL Poly-Metals		1 /
F-193B-R_2223_D2_01	6/27/2023		Grab	Dissolved Metals (EPA 200.8); Dissolved Phosphorus (EPA 200.7) 🔏	500-mL Poly-Metals Diss	Unpres.	1 🖊
F-193B-R_2223_D2_01	6/27/2023		Grab	Total Hexavalent Chromium (EPA 218.6)	60-mĻ Poly	(NH4)2SO4/NH 4OH(0.6mL)	1 //
F-193B-R_2223_D2_01	6/27/2023		Grab	Dissolved Hexavalent Chromium (EPA 218.6)	60-mL Poly	Unpres.	1 /
F-193B-R_2223_D2_01	6/27/2023		Grab	TDS (SM 2540C); TSS (SM 2540D)	2-L Poly	Unpres.	1
F-193B-R_2223_D2_01	6/27/2023		Grab	Ammonia (EPA 350.1); TKN (EPA 351.2)	500-mĻ Poly	H2SO4	1 🥕
F-193B-R_2223_D2_01	6/27/2023		Grab	Nitrate N (EPA 353.2); Nitrite N (EPA 353.2)	250-mL Poly	Unpres.	1
F-193B-R_2223_D2_01	6/27/2023	1	Grab	PAH (EPA 625.1)	1-L Amber Glass	Unpres.	2 /
F-194B-R_2223_D2_01	6/27/2023	1020	Grab	Chlorophyll-a (SM 10200H) ✓	1-L Amber Poly	Unpres.	1
F-194B-R_2223_D2_01	6/27/2023		Grab	Total Metals (EPA 200.8); Hardness (EPA 200.7); / Total Phosphorus (EPA 200.7)	500-mL Poly-Metals	HNO3	1
F-194B-R_2223_D2_01	6/27/2023	1	Grab	Dissolved Metals (EPA 200.8); Dissolved Phosphorus (EPA 200.7)	500-mL Poly-Metals Diss	Unpres.	1
Special Instructions/Comments:							
Metals (Dissolved and Total) to include alu Please provide results to Brenda Stevens (minum, antimon brenda.stevens(y, arsenic, berylliur @wsp.com) and Lu	n, cadmium, chromit is De La Torre (luis	um (total), chromium (hexavalent), copper, iron, lead, mercury, nickel, selenium, silver, .delatorre@wsp.com)	thallium, and zinc		
Sampled and Relinquished By:				Received By:		,	
Print: Luis De La Torre		Date/Time: 6	27 -23	Print:	Date/Time: /		
Sign: Lis De La Jours			12:34	sign: Lester Man 4CF 116 - Tores	Date/Time: 12	24	
Print:		Date/Time:		Print: *	Date/Time:		
Sign:				Sign:			
Print:		Date/Time:		Print:	Date/Time:		
Sign:				Sign:	·		

	-	•)
--	---	---	--	---

Lab Notes:

Page 2 of 3

WSP Environment & Infrastructure Solutio 9177 Sky Park Court San Diego, CA 92123 (661) 373-5505 (858) 278-5300 Fax Contact: Brenda Stevens/Kimberly Henry		14859 (Industry (626) 3 (626) 3 Contac		5				
PO#:	<u> </u>	t Numbe			Project Name:		ole Matrix:	
C015102726	5025-	22-00 T	04		SGVCOG Fire Effects Study	<u> </u>	Vater	
SampleID	Sample Date	Samp	le Time	Sample Type	Analysis	Container	Pres	No. of Bottles
F-194B-R_2223_D2_01	6/27/2023	10	20	Grab	Total Hexavalent Chromium (EPA 218.6)	60-mL Poly	(NH4)2SO4/NH 4OH(0.6mL)	. 1
F-194B-R_2223_D2_01	6/27/2023			Grab	Dissolved Hexavalent Chromium (EPA 218.6)	60-mL Poly	Unpres.	1
F-194B-R_2223_D2_01	6/27/2023			Grab	TDS (SM 2540C); TSS (SM 2540D)	2-L Poly	Unpres.	1
F-194B-R_2223_D2_01	6/27/2023			Grab	Ammonia (EPA 350.1); TKN (EPA 351.2)	500-mL Poly	H2SO4	1
F-194B-R_2223_D2_01	6/27/2023			Grab	Nitrate N (EPA 353.2); Nitrite N (EPA 353.2)	250-mL Poly	Unpres.	1
F-194B-R_2223_D2_01	6/27/2023		,	Grab	PAH (EPA 625.1)	1-L Amber Glass	Unpres.	2
ARCAD_WA_CON_2223_D2_01	6/27/2023	(11)	5	Grab	Chlorophyll-a (SM 10200H)	1-L Amber Poly	Unpres.	1
ARCAD_WA_CON_2223_D2_01	6/27/2023	1		Grab	Total Metals (EPA 200.8); Hardness (EPA 200.7); Total Phosphorus (EPA 200.7)	500-mL Poly-Metals	HNO3	1
ARCAD_WA_CON_2223_D2_01	6/27/2023			Grab	Dissolved Metals (EPA 200.8); Dissolved Phosphorus (EPA 200.7)	500-mL Poly-Metals Diss	Unpres.	1
ARCAD_WA_CON_2223_D2_01	6/27/2023			Grab	Total Hexavalent Chromium (EPA 218.6)	60-mL Poly	(NH4)2SO4/NH 4OH(0.6mL)	1
ARCAD_WA_CON_2223_D2_01	6/27/2023			Grab	Dissolved Hexavalent Chromium (EPA 218.6)	60-mL Poly	Unpres.	1
ARCAD_WA_CON_2223_D2_01	6/27/2023	\downarrow	•	Grab	TDS (SM 2540C); TSS (SM 2540D)	2-L Poly	Unpres.	1
Special Instructions/Comments:							<u> </u>	
Metals (Dissolved and Total) to include alu Please provide results to Brenda Stevens (minum, antimony brenda.stevens(y, arseni @wsp.co	c, beryllium om) and Lu	n, cadmium, chromi is De La Torre (luis	um (total), chromium (hexavalent), copper, iron, lead, mercury, nickel, selenium, silver, delatorre@wsp.com)	thallium, and zinc		
Sampled and Relinquished By:			<u> </u>	•	Received By:	·		
Print: Lois De Lo-Tosse		Date/Tir	ne: (_o -	27-23	Print:	Date/Time:	00//	
Sign: Lisab, The			·	2:34	sign: lefter Wall 1.6 - NULL 6/27/	3 17:34	HY	
Print:		Date/Tir	ne:		Print:	Date/Time: /		
Sign:					Sign:			
Print:		Date/Tin	ne:		Print:	Date/Time:		
Sign:					Sign:			

V	-			
---	---	--	--	--

Page 3 of 3

From:		То:		Lab Notes:			
WSP Environment & Infrastructure Solution	ns	Weck Laboratories					
9177 Sky Park Court		14859 Clark Aver					
San Diego, CA 92123 (661) 373-5505		industry, CA 9174 (626) 336-2139	.5				
(858) 278-5300 Fax		(626) 336-2634 F	av				
Contact: Brenda Stevens/Kimberly Henry		Contact: Chris Sa					
PO#:	Project	Number:		Project Name:	Samı	ole Matrix:	
C015102726	5025-	22-0004		SGVCOG Fire Effects Study	V	Vater	
SampleID	Sample Date	Sample Time	Sample Type	Analysis	Container	Pres	No. of Bottles
ARCAD_WA_CON_2223_D2_01	6/27/2023	1115	Grab	Ammonia (EPA 350.1); TKN (EPA 351.2)	500-mL Poly	H2SO4	1
ARCAD_WA_CON_2223_D2_01	6/27/2023		Grab	Nitrate N (EPA 353.2); Nitrite N (EPA 353.2)	250-mL Poly	Unpres.	1
ARCAD_WA_CON_2223_D2_01	6/27/2023	V	Grab	PAH (EPA 625.1)	1-L Amber Glass	Unpres.	2
F-193B-R_2223_D2_03	6/27/2023	0921	Grab	Chlorophyll-a (SM 10200H)	1-L Amber Poly	Unpres.	1
F-193B-R_2223_D2_03	6/27/2023	1	Grab	Total Metals (EPA 200.8); Hardness (EPA 200.7); Total Phosphorus (EPA 200.7)	500-mL Poly-Metals	HNO3	1
F-193B-R_2223_D2_03	6/27/2023		Grab	Dissolved Metals (EPA 200.8); Dissolved Phosphorus (EPA 200.7)	500-mL Poly-Metals Diss	Unpres.	1
F-193B-R_2223_D2_03	6/27/2023		Grab	Total Hexavalent Chromium (EPA 218.6)	60-mL Poly	(NH4)2SO4/NH 4OH(0.6mL)	1
F-193B-R_2223_D2_03	6/27/2023		Grab	Dissolved Hexavalent Chromium (EPA 218.6)	60-mL Poly	Unpres.	1
F-193B-R_2223_D2_03	6/27/2023		Grab	TDS (SM 2540C); TSS (SM 2540D)	2-L Poly	Unpres.	1
F-193B-R_2223_D2_03	6/27/2023		Grab	Ammonia (EPA 350.1); TKN (EPA 351.2)	500-mL Poly	H2SO4	1
F-193B-R_2223_D2_03	6/27/2023		Grab	Nitrate N (EPA 353.2); Nitrite N (EPA 353.2)	250-mL Poly	Unpres.	1
F-193B-R_2223_D2_03	6/27/2023	1	Grab	PAH (EPA 625.1)	1-L Amber Glass	Unpres.	2
Special Instructions/Comments:						·	
Metals (Dissolved and Total) to include alur Please provide results to Brenda Stevens (I	minum, antimony brenda.stevens@	, arsenic, berylliun Dwsp.com) and Lu	n, cadmium, chromiu is De La Torre (luis	um (total), chromium (hexavalent), copper, iron, lead, mercury, nickel, selenium, silver, delatorre@wsp.com)	thallium, and zinc		
Sampled and Relinquished By:				Received By:		· · · · · · · · · · · · · · · · · · ·	
Print: Luis De La Torre		Date/Time:	-27-23	Print: 1	Date//Time: /		
Sign: Lis de Line			=	sign: Laster Olany fly 1,6 - mel		2:34	
Print:		Date/Time:		Print:	Date/Time:		
Sign:				Sign:			
Print:		Date/Time:		Print:	Date/Time:		
Sign:				Sign:			- 1
-							

Sample Receipt Checklist

	Weck WKO: 3F27060		Date/1	Date/Time Received:	eived: 06/27/23 @ 12:34
Samp	WKO Logged by: Rey Edrosa Samples Checked by: Lester Abad			# of Samples: Delivered by:	# of Samples: 04 Delivered hv: Client
		Yes	No	N/A	1
	COC present at receipt?			•	
:	COC properly completed?				
coc	CUC matches sample labels?	\boxtimes	. 🖂		
	Project Manager notified?				
	Sample Temperature	–	1.6 °C		
n	Samples received on ice?	\boxtimes			
tio	Ice Type (Blue/Wet)	-	Wet		
rma	All samples intact?	\boxtimes			
pt Info	Samples in proper containers? Sufficient sample volume?				
Rece	Received within holding time?	\boxtimes			
	Project Manager notified?			\boxtimes	
	Sample labels checked for correct preservation?	\boxtimes			
ation?	VOC Headspace: (No) none, If Yes (See comment) 524.2, 524.3, 624.1, 8260, 1666 P/T, LUFT		□	×	□ <6mm/Pea size?
ation Verific	pH verified upon receipt? Metals <2; H2SO4 pres tests <2; 522<4; TOC <2; 508.1, 525.2<2; 6710B<2; 608.3 5-9			\boxtimes	pH paper Lot#
reserv	Free Chlorine Tested < 0.1 (Organics Analyses)			\boxtimes	Cl Test Strip Lot#
Sample P	O&G pH <2 verified? pH adjusted for O&G Project Manager notified?				pH paper Lot# pH Reading: Acid Lot# Amt added:
PM Cor	PM Comments				
Sample Red Signature:	Sample Receipt Checklist Prepared by: Signature: Rey Edrosa				Date: 06/27/2023

Upper Los Angeles River Watershed Management Area Fire Effects Study Interim Report November 2023 – DRAFT

Wet Weather Water Quality Data

FINAL REPORT

Work Orders: 3A15019 Report Date: 3/03/2023

Received Date: 1/15/2023

Turnaround Time: Normal

Phones: (858) 514-7729

Fax: (858) 278-5300

P.O. #: C015102726

Billing Code:

Attn: Brenda Stevens

Client: WSP USA E&I Inc. - San Diego

Project: SGVCOG Fire Effects Study

9177 Sky Park Court, Ste A San Diego, CA 92123

Dod-ELAP ANAB #ADE-2882 • Dod-ISO ANAB # • ELAP-CA #1132 • EPA-UCMR #CA00211 • ISO17025 ANAB #L2457.01 • LACSD #10143

This is a complete final report. The information in this report applies to the samples analyzed in accordance with the chain-of-custody document. Weck Laboratories certifies that the test results meet all requirements of TNI unless noted by qualifiers or written in the Case Narrative. This analytical report must be reproduced in its entirety.

Dear Brenda Stevens,

Enclosed are the results of analyses for samples received 1/15/23 with the Chain-of-Custody document. The samples were received in good condition, at 2.4 °C and on ice. All analyses met the method criteria except as noted in the case narrative or in the report with data qualifiers.

Reviewed by:

Chris Samatmanakit Project Manager

1: State

3A15019 Page 1 of 28

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Reported:

03/03/2023 13:52

Sample Summary

Sample Name	Sampled By	Lab ID	Matrix	Sampled	Qualifiers
F_193B_R-2223_W1_01	Luis De La Torre	3A15019-01	Water	01/14/23 22:00	
F_194B_R-2223_W1_01	Luis De La Torre	3A15019-02	Water	01/14/23 22:15	
ARCAD_WA_CON_2223_W1_01	Luis De La Torre	3A15019-03	Water	01/15/23 01:30	
F_193B_R-2223_W1_01	Luis De La Torre	3A15019-04	Water	01/14/23 15:45	
F_194B_R-2223_W1_01	Luis De La Torre	3A15019-05	Water	01/14/23 15:30	
ARCAD_WA_CON_2223_W1_01	Luis De La Torre	3A15019-06	Water	01/14/23 15:28	
F_193B_R-2223_W1_02	Luis De La Torre	3A15019-07	Water	01/14/23 15:45	
F_193B_R-2223_W1_01	Luis De La Torre	3A15019-08	Water	01/14/23 15:45	
F_194B_R-2223_W1_01	Luis De La Torre	3A15019-09	Water	01/14/23 15:30	
ARCAD_WA_CON_2223_W1_01	Luis De La Torre	3A15019-10	Water	01/14/23 15:28	
F_193B_R-2223_W1_02	Luis De La Torre	3A15019-11	Water	01/14/23 15:45	

Project Manager: Brenda Stevens

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123

Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

03/03/2023 13:52

Sample:	F_193B_R-2223_W1_01					Sampled: (01/14/23 22:00 by L	uis De La Torre
	3A15019-01 (Water)							a 116
Analyte	Chemistry/Physical Parameters	Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
		by APHA/EPA/ASTM Methods		Landa (CALC)				
Method: Cald		Dunnersting [CALC]		Instr: [CALC]	20/22 11.46			A a l a t
Batch ID: [6 Nitrogen,		Preparation: [CALC]	0.036	Prepared: 01/2 0.20	28/23 11:46 mg/l	1	01/31/23	Analyst: ym
Method: EPA	A 350 1			Instr: AA06	-			
Batch ID: V		Preparation: _NONE (WETCHEM)		Prepared: 01/2	25/23 11:23			Analyst: YM
Ammonia		0.085	0.017	0.10	mg/l	1	01/27/23	7
Method: EPA	A 351.2			Instr: AA06				
Batch ID: V		Preparation: _NONE (WETCHEM)		Prepared: 01/2	28/23 11:46			Analyst: ym
TKN		0.36	0.13	0.20	mg/l	1	01/31/23	M-0
Method: EPA	A 353.2			Instr: AA01				
Batch ID: V	W3A1271	Preparation: _NONE (WETCHEM)		Prepared: 01/	16/23 16:32			Analyst: YM
Nitrate as	N	1.9	0.040	0.20	mg/l	1	01/16/23 19:29	
Nitrite as N	١	ND	42	100	ug/l	1	01/16/23 19:29	
NO2+NO3	as N	1900	36	200	ug/l	1	01/16/23	
exavalent Ch	romium by IC							
Method: EPA	A 218.6			Instr: LC13				
Batch ID: V	W3A1651	Preparation: _NONE (LC)		Prepared: 01/	19/23 10:00			Analyst: PJS
Chromium	1 6+	0.21	0.0079	0.020	ug/l	1	01/19/23	
Chromium	1 6+, Dissolved	0.23	0.0079	0.020	ug/l	1	01/19/23	
etals by EPA	200 Series Methods							
Method: EPA	A 200.7			Instr: ICP03				
Batch ID: V	W3A2419	Preparation: EPA 200.2		Prepared: 01/3	30/23 09:47			Analyst: kvm
Phosphore	us, Dissolved	0.073	0.018	0.050	mg/l	1	01/31/23	
Phosphore	us, Total	0.22	0.018	0.050	mg/l	1	01/31/23	
Method: EPA	A 200.8			Instr: ICPMS06	5			
Batch ID: V	W3A2421	Preparation: EPA 200.2		Prepared: 01/3	30/23 11:44			Analyst: tyo
Aluminum	n, Dissolved	35	4.4	20	ug/l	1	02/01/23	
Aluminum	ı, Total	4900	4.4	20	ug/l	1	02/01/23	
Antimony,	, Dissolved	0.53	0.089	0.50	ug/l	1	02/01/23	
Antimony,	, Total	1.5	0.089	0.50	ug/l	1	02/01/23	
Arsenic, D	Dissolved	0.66	0.074	0.40	ug/l	1	02/01/23	
Arsenic, T	otal	2.3	0.074	0.40	ug/l	1	02/01/23	
Beryllium,	Dissolved	ND	0.062	0.10	ug/l	1	02/01/23	
Beryllium,	, Total	0.19	0.029	0.10	ug/l	1	02/01/23	
Cadmium,	Dissolved	ND	0.042	0.20	ug/l	1	02/01/23	
Cadmium,	, Total	0.082	0.042	0.20	ug/l	1	02/01/23	
•			0.089	0.20	ug/l	1	02/01/23	
Chromium	.,	6.4	0.089	0.20	ug/l	1	02/01/23	
	,	•		-	J.			

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

03/03/2023 13:52

5

Sample Results

Sample:	F_193B_R-2223_W1_01					Sampled: 01	/14/23 22:00 by	
	3A15019-01 (Water)							(Continued
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifi
etals by EP	A 200 Series Methods (Continue	d)						
Method: EP				Instr: ICPMS06				
	: W3A2421 Dissolved	Preparation: EPA 200.2	0.23	Prepared: 01/3	30/23 11:44 ug/l	1	02/01/23	Analyst: ty
Copper, 1			0.23	0.50	ug/l	' 1	02/01/23	
Iron, Diss			3.9	20	ug/l	1	02/01/23	
Iron, Tota	55,754		3.9	20	ug/l	' 1	02/01/23	
•			0.083	0.20	ug/l	1	02/01/23	
Lead, Dis		9.2	0.083	0.20	_	1	02/01/23	
Lead, Tot					ug/l	1		
Nickel, Di		0.51 6.2	0.16	2.0	ug/l		02/01/23	
Nickel, To			0.40	2.0	ug/l	1	02/01/23	
	., 5.0001100	0.000	0.067	0.40	ug/l	1	02/01/23	
Selenium	.,	0.15	0.067	0.40	ug/l	1	02/01/23	
Silver, Dis	555.1.54	ND ND	0.030	0.20	ug/l	1	02/01/23	
Silver, Tot		ND	0.055	0.20	ug/l	1	02/01/23	
		ND	0.021	0.20	ug/l	1	02/01/23	
Thallium,	, rotal	0.029	0.021	0.20	ug/l	1	02/01/23	
Zinc, Dis		4.7	0.80	10	ug/l	1	02/01/23	
Zinc, Tota	al	74	1.7	10	ug/l	1	02/01/23	
/lethod: EP	PA 245.1			Instr: HG03				
	W3A2172	Preparation: EPA 245.1	0.007	Prepared: 01/2		4	04/07/00	Analyst: KV
-		ND ND	0.037	0.050	ug/l	1	01/27/23	
Mercury,	Iotal	ND	0.037	0.050	ug/l	1	01/27/23	
mivolatile (Organics - Low Level by Tandem	GC/MS/MS						
Method: EP	PA 625.1			Instr: GCMS15				
	: W3A1700	Preparation: EPA 3535/SPE	0.0	Prepared: 01/2		4	04/04/00	Analyst: E
Acenapht		ND ND	6.0	25	ng/l	1	01/21/23	M-
Acenapht	•	ND	5.0	25	ng/l	1	01/21/23	M-
Anthracer		ND	5.5	25	ng/l	1	01/21/23	M
` '	,	ND	4.6	25	ng/l	1	01/21/23	M-
Benzo (a)	, , , , , , , , , , , , , , , , , , , ,	ND	4.8	25	ng/l	1	01/21/23	M-
` '	,	ND	8.0	25	ng/l	1	01/21/23	M-
Benzo (g,	,,., po. y.o	ND	5.0	25	ng/l	1	01/21/23	M
()	,	ND	6.0	25	ng/l	1	01/21/23	M
Chrysene		ND	7.0	25	ng/l	1	01/21/23	M
Dibenzo ((a,h) anthracene	ND	6.0	25	ng/l	1	01/21/23	M
Fluoranth	nene		7.5	25	ng/l	1	01/21/23	M
Fluorene			5.5	25	ng/l	1	01/21/23	M
Indeno (1	1,2,3-cd) pyrene	ND	4.8	25	ng/l	1	01/21/23	M-
15019								Page 4

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Reported:

03/03/2023 13:52

San Diego, CA 92123

Sample Results

Project Manager: Brenda Stevens

Sample:	F_193B_R-2223_W1_01				S	ampled: 01	/14/23 22:00 by	Luis De La Torre
	3A15019-01 (Water)							(Continued)
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
Semivolatile O	rganics - Low Level by Tandem GC	C/MS/MS (Continued)						
Method: EPA	625.1			Instr: GCMS15				
Batch ID: V	V3A1700	Preparation: EPA 3535/SPE		Prepared: 01/2	20/23 08:25			Analyst: EFC
Naphthale	ne	21	16	25	ng/l	1	01/21/23	M-02, J
Phenanthre	ene	ND	15	25	ng/l	1	01/21/23	M-02
Pyrene		ND	7.0	25	ng/l	1	01/21/23	M-02
Surrogate(s)								
1,3-Dimeth	yl-2-nitrobenzene	88%	Conc: 440	62-120			01/21/23	
Perylene-d	112	52%	Conc: 261	36-120			01/21/23	

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

03/03/2023 13:52

Sample Results

Sample: F_1	94B_R-2223_W1_01					Sampled: (01/14/23 22:15 by L	uis De La Torr
3A1	5019-02 (Water)							
Analyte		Resul	t MDL	MRL	Units	Dil	Analyzed	Qualifie
nventional Chemis	stry/Physical Parameters	by APHA/EPA/ASTM Methods						
Method: Calculation	n			Instr: [CALC]				
Batch ID: [CALC]		Preparation: [CALC]		Prepared: 01/				Analyst: ym
Nitrogen, Total			0.036	0.20	mg/l	1	01/31/23	
Method: EPA 350.1				Instr: AA06				
Batch ID: W3A208	84	Preparation: _NONE (WETCHEM)		Prepared: 01/	25/23 11:23			Analyst: YM
Ammonia as N		0.16	0.017	0.10	mg/l	1	01/27/23	
Method: EPA 351.2				Instr: AA06				
Batch ID: W3A238	87	Preparation: _NONE (WETCHEM)		Prepared: 01/	28/23 11:46			Analyst: ym
TKN		0.63	0.13	0.20	mg/l	1	01/31/23	M-0
Method: EPA 353.2				Instr: AA01				
Batch ID: W3A12	71	Preparation: _NONE (WETCHEM)		Prepared: 01/	16/23 16:32			Analyst: YM
Nitrate as N		0.84	0.040	0.20	mg/l	1	01/16/23 19:30	
Nitrite as N			42	100	ug/l	1	01/16/23 19:30	
NO2+NO3 as N		870	36	200	ug/l	1	01/16/23	
exavalent Chromiu	m by IC							
Method: EPA 218.6				Instr: LC13				
Batch ID: W3A16	51	Preparation: _NONE (LC)		Prepared: 01/	19/23 10:00			Analyst: PJ
Chromium 6+		0.30	0.0079	0.020	ug/l	1	01/19/23	
Chromium 6+, D	issolved	0.33	0.0079	0.020	ug/l	1	01/19/23	
etals by EPA 200 S	eries Methods							
Method: EPA 200.7				Instr: ICP03				
Batch ID: W3A24	19	Preparation: EPA 200.2		Prepared: 01/	30/23 09:47			Analyst: kvn
Phosphorus, Dis	ssolved	0.072	0.018	0.050	mg/l	1	01/31/23	
Phosphorus, Tot	tal	0.20	0.018	0.050	mg/l	1	01/31/23	
Method: EPA 200.8				Instr: ICPMS06	6			
Batch ID: W3A242	21	Preparation: EPA 200.2		Prepared: 01/	30/23 11:44			Analyst: ty
Aluminum, Disso	olved		5 4.4	20	ug/l	1	02/01/23	
Aluminum, Total		3600	4.4	20	ug/l	1	02/01/23	
Antimony, Disso	lved	0.41	0.089	0.50	ug/l	1	02/01/23	
Antimony, Total			0.089	0.50	ug/l	1	02/01/23	
Arsenic, Dissolv	ed	0.52	0.074	0.40	ug/l	1	02/01/23	
Arsenic, Total			0.074	0.40	ug/l	1	02/01/23	
Beryllium, Dissol	ved	NC	0.062	0.10	ug/l	1	02/01/23	
Beryllium, Total			0.029	0.10	ug/l	1	02/01/23	
Cadmium, Dissol		NC		0.20	ug/l	1	02/01/23	
Cadmium, Total		0.076		0.20	ug/l	1	02/01/23	
•		0.29		0.20	· ·	1	02/01/23	
Chromium, Diss				0.20	ug/l	1	02/01/23	
Chromium, Total		4.9	0.089	0.20	ug/l	1	02/01/23	

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

03/03/2023 13:52

5

Sample Results

Sample:	F_194B_R-2223_W1_01					Sampled: 01	/14/23 22:15 by	
	3A15019-02 (Water)							(Continued
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualific
•	A 200 Series Methods (Continue	ed)						
Method: EP				Instr: ICPMS06				
Batch ID: Copper, E		Preparation: EPA 200.2	0.23	Prepared: 01/3	30/23 11:44 ug/l	1	02/01/23	Analyst: ty
Copper, T		13	0.23	0.50	ug/l	1	02/01/23	
Iron, Diss			3.9	20	ug/l	1	02/01/23	
Iron, Tota		4200	3.9	20	ug/l	1	02/01/23	
Lead, Dis	-	0.15	0.083	0.20	ug/l	1	02/01/23	
Lead, Tot		10	0.083	0.20	ug/l	1	02/01/23	
Nickel, Di			0.16	2.0	ug/l	1	02/01/23	
Nickel, To		4.0	0.40	2.0	ug/l	1	02/01/23	
•		ND	0.067	0.40	ug/l	1	02/01/23	
Selenium,	,	ND	0.067	0.40	ug/l	1	02/01/23	
Silver, Dis	,	ND	0.030	0.20	ug/l	1	02/01/23	
Silver, Tot		ND	0.055	0.20	ug/l	1	02/01/23	
		ND	0.021	0.20	ug/l	1	02/01/23	
Thallium,		0.026	0.021	0.20	ug/l	1	02/01/23	
Zinc, Diss	, rotui	8.7	0.80	10	ug/l	1	02/01/23	
Zinc, Tota		75	1.7	10	ug/l	1	02/01/23	
Method: EP				Instr: HG03	3			
Batch ID:		Preparation: EPA 245.1		Prepared: 01/2	26/23 08:30			Analyst: KVI
Mercury, I	Dissolved	ND	0.037	0.050	ug/l	1	01/27/23	•
Mercury,	Total	ND	0.037	0.050	ug/l	1	01/27/23	
mivolatile (Organics - Low Level by Tandem	GC/MS/MS						
Method: EP	A 625.1			Instr: GCMS15	;			
Batch ID:	W3A1700	Preparation: EPA 3535/SPE		Prepared: 01/2	20/23 08:25			Analyst: EF
Acenapht	thene	ND	6.0	25	ng/l	1	01/21/23	M-(
Acenapht	thylene	ND	5.0	25	ng/l	1	01/21/23	M-(
Anthracer	ne	ND	5.5	25	ng/l	1	01/21/23	M-(
Benzo (a)) anthracene	ND	4.6	25	ng/l	1	01/21/23	M-(
Benzo (a)) pyrene	ND	4.8	25	ng/l	1	01/21/23	M-(
Benzo (b)) fluoranthene	ND	8.0	25	ng/l	1	01/21/23	M-(
Benzo (g,	,h,i) perylene	ND	5.0	25	ng/l	1	01/21/23	M-
Benzo (k)	fluoranthene	ND	6.0	25	ng/l	1	01/21/23	M-(
Chrysene	:	ND	7.0	25	ng/l	1	01/21/23	M-(
Dibenzo ((a,h) anthracene	ND	6.0	25	ng/l	1	01/21/23	M-
Fluoranth	ene	ND	7.5	25	ng/l	1	01/21/23	M-
Fluorene		ND	5.5	25	ng/l	1	01/21/23	M-(
Indeno (1	,2,3-cd) pyrene	ND	4.8	25	ng/l	1	01/21/23	M-0
A15019								Page 7 c

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Reported:

03/03/2023 13:52

Sample Results

Project Manager: Brenda Stevens

Sample:	F_194B_R-2223_W1_01				S	Sampled: 01/14/23 22:15 by Luis De La To				
	3A15019-02 (Water)							(Continued)		
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifier		
Semivolatile Or	ganics - Low Level by Tandem (GC/MS/MS (Continued)								
Method: EPA	625.1			Instr: GCMS15						
Batch ID: W3A1700 Preparation: EPA 353		Preparation: EPA 3535/SPE	35/SPE Prepared: 01/20/23 08:25							
Naphthalen	1e	22	16	25	ng/l	1	01/21/23	M-02, J		
Phenanthre	ne	ND	15	25	ng/l	1	01/21/23	M-02		
Pyrene		ND	7.0	25	ng/l	1	01/21/23	M-02		
Surrogate(s)										
1,3-Dimeth	yl-2-nitrobenzene	84%	Conc: 420	62-120			01/21/23			
Perylene-d1	12	57%	Conc: 283	36-120			01/21/23			

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

03/03/2023 13:52

Sample Results

Sample: ARCAD_WA_CC	N_2223_W1_01					Sampled: (01/15/23 1:30 by L	uis De La Torr
3A15019-03 (W	ater)							
Analyte	R	Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
nventional Chemistry/Physical	Parameters by APHA/EPA/ASTM Methods							
Method: Calculation				Instr: [CALC]				
Batch ID: [CALC]	Preparation: [CALC]			Prepared: 01/2	28/23 11:46			Analyst: ym
Nitrogen, Total		1.4	0.036	0.20	mg/l	1	01/31/23	
Method: EPA 350.1				Instr: AA06				
Batch ID: W3A2084	Preparation: _NONE (WETCHEM)			Prepared: 01/2	25/23 11:23			Analyst: YM
Ammonia as N		0.13	0.017	0.10	mg/l	1	01/27/23	
Method: EPA 351.2				Instr: AA06				
Batch ID: W3A2387	Preparation: _NONE (WETCHEM)			Prepared: 01/2	28/23 11:46			Analyst: ym
TKN		0.92	0.13	0.20	mg/l	1	01/31/23	M-C
Method: EPA 353.2				Instr: AA01				
Batch ID: W3A1271	Preparation: _NONE (WETCHEM)			Prepared: 01/	16/23 16:32			Analyst: YM
Nitrate as N		0.46	0.040	0.20	mg/l	1	01/16/23 19:31	
Nitrite as N		ND	42	100	ug/l	1	01/16/23 19:31	
NO2+NO3 as N		490	36	200	ug/l	1	01/16/23	
exavalent Chromium by IC								
Method: EPA 218.6				Instr: LC13				
Batch ID: W3A1651	Preparation: _NONE (LC)			Prepared: 01/	19/23 10:00			Analyst: PJ
	·	0.33	0.0079	0.020	ug/l	1	01/19/23	Analysta
Chromium 6+, Dissolved		0.33	0.0079	0.020	ug/l	1	01/19/23	
atala hu EDA 200 Sarias Mathas	1.							
etals by EPA 200 Series Method	15			Laster ICD02				
Method: EPA 200.7	Dunnantina, FDA 200.2			Instr: ICP03	00/22 00:47			A sea beaute les su
Batch ID: W3A2419 Phosphorus, Dissolved	Preparation: EPA 200.2	0.13	0.018	Prepared: 01/3 0.050	mg/l	1	01/31/23	Analyst: kvr
Phosphorus, Total		0.24	0.018	0.050	mg/l	1	01/31/23	
•		V. _ -	0.0.0		ŭ	·	0 1/0 1/20	
Method: EPA 200.8				Instr: ICPMS06				
Batch ID: W3A2421	Preparation: EPA 200.2	50	4.4	Prepared: 01/3		4	02/04/22	Analyst: ty
Aluminum, Dissolved		50	4.4	20	ug/l	1	02/01/23	
Aluminum, Total		2600	4.4	20	ug/l	1	02/01/23	
,		0.32	0.089	0.50	ug/l	1	02/01/23	
,,, ,		0.59	0.089	0.50	ug/l	1	02/01/23	
Arsenic, Dissolved		0.75	0.074	0.40	ug/l	1	02/01/23	
Arsenic, Total		1.3	0.074	0.40	ug/l	1	02/01/23	
Beryllium, Dissolved		ND	0.062	0.10	ug/l	1	02/01/23	
Beryllium, Total	C	0.081	0.029	0.10	ug/l	1	02/01/23	
		ND	0.042	0.20	ug/l	1	02/01/23	
Cadmium, Dissolved			0.042	0.20	ug/l	1	02/01/23	
,	C	0.057	0.042	0.20	ug/i		02/01/25	
,		0.057 0.39	0.042	0.20	ug/l	1	02/01/23	

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123

Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

03/03/2023 13:52

Sample Results

Sample:	ARCAD_WA_CON_2223_W1_	_01				Sampled: 0	1/15/23 1:30 by	Luis De La Tori
	3A15019-03 (Water)							(Continued
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifi
etals by EPA	A 200 Series Methods (Continued	d)						
Method: EP/	A 200.8			Instr: ICPMS06	5			
Batch ID:		Preparation: EPA 200.2		Prepared: 01/	30/23 11:44			Analyst: ty
Copper, D		3.1	0.23	0.50	ug/l	1	02/01/23	
Copper, T		8.8	0.23	0.50	ug/l	1	02/01/23	
Iron, Diss		43	3.9	20	ug/l	1	02/01/23	
Iron, Tota	•	2200	3.9	20	ug/l	1	02/01/23	
Lead, Dis	solved	0.26	0.083	0.20	ug/l	1	02/01/23	
Lead, Tota	al	4.2	0.083	0.20	ug/l	1	02/01/23	
Nickel, Di	ssolved	0.35	0.16	2.0	ug/l	1	02/01/23	
Nickel, To	otal	2.2	0.40	2.0	ug/l	1	02/01/23	
Selenium,	, Dissolved	ND	0.067	0.40	ug/l	1	02/01/23	
Selenium	, Total	0.072	0.067	0.40	ug/l	1	02/01/23	
Silver, Dis	solved	ND	0.030	0.20	ug/l	1	02/01/23	
Silver, Tota	al	ND	0.055	0.20	ug/l	1	02/01/23	
Thallium,	Dissolved	ND	0.021	0.20	ug/l	1	02/01/23	
Thallium,	Total	ND	0.021	0.20	ug/l	1	02/01/23	
Zinc, Diss	solved		0.80	10	ug/l	1	02/01/23	
Zinc, Tota	d		1.7	10	ug/l	1	02/01/23	
Method: EP/	A 245.1			Instr: HG03				
Batch ID:	W3A2172	Preparation: EPA 245.1		Prepared: 01/	26/23 08:30			Analyst: KV
Mercury, [Dissolved	ND	0.037	0.050	ug/l	1	01/27/23	
Mercury, ٦	Total	ND	0.037	0.050	ug/l	1	01/27/23	
nivolatile (Organics - Low Level by Tandem	GC/MS/MS						
Method: EPA	A 625.1			Instr: GCMS15	;			
Batch ID:	W3A1700	Preparation: EPA 3535/SPE		Prepared: 01/	20/23 08:25			Analyst: E
Acenaphtl	hene	ND	6.0	25	ng/l	1	01/21/23	M-
Acenaphtl	hylene	ND	5.0	25	ng/l	1	01/21/23	M-
Anthracen	ne	ND	5.5	25	ng/l	1	01/21/23	M-
Benzo (a)	anthracene	ND	4.6	25	ng/l	1	01/21/23	M-
Benzo (a)	pyrene	ND	4.8	25	ng/l	1	01/21/23	M-
Benzo (b)	fluoranthene	ND	8.0	25	ng/l	1	01/21/23	M-
Benzo (g,	h,i) perylene	ND	5.0	25	ng/l	1	01/21/23	M-
Benzo (k)	fluoranthene	ND	6.0	25	ng/l	1	01/21/23	M-
Chrysene		ND	7.0	25	ng/l	1	01/21/23	M-
•		ND	6.0	25	ng/l	1	01/21/23	M-
Fluoranthe	, ,		7.5	25	ng/l	1	01/21/23	M-
Fluorene		ND	5.5	25	ng/l	1	01/21/23	 M-
		ND	4.8	25	ng/l	1	01/21/23	M-
	,_, , - ,	IND	7.0	20	.19/1		0 1/2 1/20	141-0

01/20/23

mg/l

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123

Total Suspended Solids

Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

03/03/2023 13:52

	_	_	
			_
			C
) O C
			, – -

Sample Results

Sample:	ARCAD_WA_CON_2223_W1_0	1				Sampled: 01	1/15/23 1:30 by	Luis De La Torr
•	3A15019-03 (Water)					'		(Continued
Analyte	,	Result	MDL	MRL	Units	Dil	Analyzed	Qualifi
emivolatile (Organics - Low Level by Tandem G	C/MS/MS (Continued)						
Method: EP	A 625.1			Instr: GCMS15				
Batch ID:	W3A1700	Preparation: EPA 3535/SPE		Prepared: 01/20	0/23 08:25			Analyst: EF
Naphthale	ene	22	16	25	ng/l	1	01/21/23	J, M-0
Phenanth	rene		15	25	ng/l	1	01/21/23	M-(
Pyrene -		ND	7.0	25	ng/l	1	01/21/23	M-(
Surrogate(s)								
1,3-Dimet	thyl-2-nitrobenzene		Conc: 504	62-120			01/21/23	
Perylene-	-d12	52%	Conc: 261	36-120			01/21/23	
Sa	ample Results							(Continue
Sample:	F_193B_R-2223_W1_01					Sampled: 01	/14/23 15:45 by	Luis De La Tor
	3A15019-04 (Water)							
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualif
onventional	Chemistry/Physical Parameters by	APHA/EPA/ASTM Methods						
Method: SM	л 2540C			Instr: OVEN01				
Batch ID:	W3A1402	Preparation: _NONE (WETCHEM)		Prepared: 01/17	7/23 17:56			Analyst: tm
Total Diss	solved Solids	130	4.0	10	mg/l	1	01/18/23	
Method: SM	л 2540D			Instr: OVEN15				
Batch ID:	W3A1715	Preparation: _NONE (WETCHEM)		Prepared: 01/20	0/23 09:33			Analyst: me
Total Sus	pended Solids	210		5	mg/l	1	01/20/23	
Sa	ample Results							(Continue
Sample:	F_194B_R-2223_W1_01					Sampled: 01	/14/23 15:30 by	Luis De La Tor
	3A15019-05 (Water)							
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualif
onventional	Chemistry/Physical Parameters by	APHA/EPA/ASTM Methods						
Method: SM	л 2540C			Instr: OVEN01				
Batch ID:	W3A1402	Preparation: _NONE (WETCHEM)		Prepared: 01/17	7/23 17:56			Analyst: tm
Total Diss	solved Solids	100	4.0	10	mg/l	1	01/18/23	
Method: SM	1 2540D			Instr: OVEN15				
wiceiiou.								

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123

Batch ID: W3A2419

Magnesium, Total

Calcium, Total

Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

03/03/2023 13:52

		1	
1			
7			
7			

Sample Results

(Continued)

Analyst: kvm

01/31/23

01/31/23

Sample:	ARCAD_WA_CON_2223_W1_0)1				Sampled: 01	/14/23 15:28 by	Luis De La Tor
	3A15019-06 (Water)							
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualif
onventional	Chemistry/Physical Parameters by	y APHA/EPA/ASTM Methods						
Method: SM	I 2540C			Instr: OVEN01				
Batch ID: \	W3A1402	Preparation: _NONE (WETCHEM)		Prepared: 01/17	7/23 17:56			Analyst: tm
Total Diss	olved Solids	47	4.0	10	mg/l	1	01/18/23	
Method: SM	1 2540D			Instr: OVEN15				
Batch ID: \	W3A1715	Preparation: _NONE (WETCHEM)		Prepared: 01/20	0/23 09:33			Analyst: me
Total Sus	pended Solids	50		5	mg/l	1	01/20/23	
Sa	ample Results							(Continue
Sample:	F_193B_R-2223_W1_02					Sampled: 01	/14/23 15:45 by	Luis De La Tor
	3A15019-07 (Water)							
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualif
onventional	Chemistry/Physical Parameters by	y APHA/EPA/ASTM Methods						
Method: SM	1 2540C			Instr: OVEN01				
Batch ID: \	W3A1402	Preparation: _NONE (WETCHEM)		Prepared: 01/17	7/23 17:56			Analyst: tm
Total Diss	olved Solids		4.0	10	mg/l	1	01/18/23	
Method: SM	1 2540D			Instr: OVEN15				
Batch ID: \	W3A1715	Preparation: _NONE (WETCHEM)		Prepared: 01/20	0/23 09:33			Analyst: me
Total Sus	pended Solids	210		5	mg/l	1	01/20/23	
	ample Deculte							(Continue
Sa	ample Results							(Continue)
Sample:	F_193B_R-2223_W1_01					Sampled: 01	/14/23 15:45 by	
	<u> </u>					Sampled: 01	/14/23 15:45 by	
/ NVIN	F_193B_R-2223_W1_01	Result	MDL	MRL	Units	Sampled: 01	/14/23 15:45 by Analyzed	Luis De La Tor
Sample:	F_193B_R-2223_W1_01	Result	MDL	MRL	Units	·	-	Luis De La Tor
Sample: Analyte letals by EPA	F_193B_R-2223_W1_01 3A15019-08 (Water)	Result	MDL	MRL Instr: [CALC]	Units	·	-	Luis De La Tor
Sample: Analyte letals by EPA	F_193B_R-2223_W1_01 3A15019-08 (Water) A 200 Series Methods	Result Preparation: [CALC]	MDL			·	-	Luis De La Tor Qualif
Sample: Analyte letals by EPA Method: Cal Batch ID: [F_193B_R-2223_W1_01 3A15019-08 (Water) A 200 Series Methods		MDL 0.344	Instr: [CALC]		·	-	

26.5

0.0736

0.0390

Prepared: 01/30/23 09:47

mg/l

mg/l

0.500

0.500

Preparation: EPA 200.2

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

03/03/2023 13:52

	 _	
		Sar
		Sar

Magnesium, Total

Sample Results

(Continued)

Sar	mpie Results								(Continuo
Sample:	F_194B_R-2223_W1_01						Sampled: 01	/14/23 15:30 by	Luis De La Tor
	3A15019-09 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualif
etals by EPA 2	200 Series Methods								
Method: Calcu	ulation				Instr: [CALC]				
Batch ID: [C/	ALC]	Preparation: [CALC]			Prepared: 01/30	0/23 09:47			Analyst: kv
Hardness as	s CaCO3, Total		75.4	0.344	3.31	mg/l	1	01/31/23	
Method: EPA 2	200.7				Instr: ICP03				
Batch ID: W	3A2419	Preparation: EPA 200.2			Prepared: 01/30	0/23 09:47			Analyst: kv
Calcium, To	otal		18.4	0.0736	0.500	mg/l	1	01/31/23	
Magnesium	, Total		7.18	0.0390	0.500	mg/l	1	01/31/23	
Sar	mple Results								(Continue
Sample:	ARCAD_WA_CON_2223_W1_01						Sampled: 01	/14/23 15:28 by	Luis De La To
	3A15019-10 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualif
etals by EPA 2	200 Series Methods								
Method: Calcu	ulation				Instr: [CALC]				
Batch ID: [C/	ALC]	Preparation: [CALC]			Prepared: 01/30	0/23 09:47			Analyst: kv
Hardness as	s CaCO3, Total		24.2	0.344	3.31	mg/l	1	01/31/23	
Method: EPA 2	200.7				Instr: ICP03				
Batch ID: W	3A2419	Preparation: EPA 200.2			Prepared: 01/30	0/23 09:47			Analyst: kv
Calcium, To	otal		7.12	0.0736	0.500	mg/l	1	01/31/23	
Magnesium	, Total		1.55	0.0390	0.500	mg/l	1	01/31/23	
Sar	mple Results								(Continue
Sample:	F_193B_R-2223_W1_02						Sampled: 01	/14/23 15:45 by	Luis De La To
	3A15019-11 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualif
	200 Series Methods								
etals by EPA 2					Instr: [CALC]				
•	ulation				mstr. [CALC]				
•		Preparation: [CALC]			Prepared: 01/30	0/23 09:47			Analyst: kv
Method: Calcu Batch ID: [C/		Preparation: [CALC]	114	0.344		0/23 09:47 mg/l	1	01/31/23	Analyst: kv
Method: Calcu Batch ID: [C/ Hardness as	ALC] s CaCO3, Total	Preparation: [CALC]	114	0.344	Prepared: 01/30		1	01/31/23	Analyst: kv
Method: Calcu Batch ID: [C/	ALC] s CaCO3, Total	Preparation: [CALC] Preparation: EPA 200.2	114	0.344	Prepared: 01/30 3.31	mg/l	1	01/31/23	Analyst: kv Analyst: kv

0.0390

0.500

mg/l

01/31/23

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

MDL

MRL

Units

Dil

Reported:

Qualifier

03/03/2023 13:52

Sample Results Enthalpy Orange

Sample: F_193B_R-2223_W1_01

3A15019-01 (Water)

Sampled: 01/14/23 22:00 by Luis De La Torre

Analyzed

	Analyte
SM	10200-H

 Method: Chlorophyll
 Batch ID: 306171
 Prepared: 01/14/23 00:00
 Analyst: ATP

 Chlorophyll a
 ND
 1.0
 mg/M3
 1
 01/25/23
 ND

Result

Project Manager: Brenda Stevens

3A15019 Page 14 of 28

01/25/23

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

1.0

mg/M3

Reported:

03/03/2023 13:52

San Diego, CA 92123

Chlorophyll a

Sample Results Enthalpy Orange

(Continued)

F_194B_R-2223_W1_01 Sampled: 01/14/23 22:15 by Luis De La Torre Sample: 3A15019-02 (Water) MDL MRL Units Dil Analyzed Qualifier Analyte Result SM 10200-H Batch ID: 306171 Method: Chlorophyll Prepared: 01/14/23 00:00 Analyst: ATP

Project Manager: Brenda Stevens

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A

Project Number: SGVCOG Fire Effects Study

Reported:

03/03/2023 13:52

San Diego, CA 92123 Sample Results Enthalpy Orange

Project Manager: Brenda Stevens

	p	.90						(00::::::::::::::::::::::::::::::::::::
Sample:	ARCAD_WA_CON_2223_W1_01 3A15019-03 (Water)				S	Sampled: 01	/15/23 1:30 by L	uis De La Torre
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
SM 10200-H								
Method: Chl	orophyll	Batch ID: 306171		Prepared: 01/	15/23 00:00			Analyst: ATP
Chlorophyl	II a	ND		1.0	mg/M3	1	01/25/23	ND

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

03/03/2023 13:52

Conventional Chemistry/Physical Parameters by APHA/E	PA/AST	M Methods									
					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
ttch: W3A1271 - EPA 353.2											
Blank (W3A1271-BLK1)		0.040	0.00		Prepared & A	nalyzed: 01/	16/23				
Nitrate as N		0.040	0.20	mg/l							
Nitrite as N		42	100	ug/l							
NO2+NO3 as N	- ND	36	200	ug/l							
.CS (W3A1271-BS1)					Prepared & A	nalyzed: 01/	16/23				
Nitrate as N	1.03	0.040	0.20	mg/l	1.00		103	90-110			
Nitrite as N	1000	42	100	ug/l	1000		100	90-110			
NO2+NO3 as N	1030	36	200	ug/l	1000		103	90-110			
Duplicate (W3A1271-DUP1) S	ource: 3	A16034-01			Prepared & A	nalyzed: 01/	16/23				
Nitrate as N	3.97	0.040	0.20	mg/l		4.02			1	20	
Nitrite as N	- 117	42	100	ug/l		115			2	20	
NO2+NO3 as N	4090	36	200	ug/l		4140			1	20	
Matrix Spike (W3A1271-MS1) S	ource: 3	A16037-04			Prepared & A	nalyzed: 01/	16/23				
Nitrate as N		0.040	0.20	mg/l	2.00	ND	104	90-110			
Nitrite as N	1010	42	100	ug/l	1000	ND	101	90-110			
NO2+NO3 as N	2070	36	200	ug/l	2000	ND	104	90-110			
Madrille Smiles Down (M2A1271 MSD1)	aaa. 3	A16027 04			Dramanad St A	mah.=ad. 01/	16/22				
Matrix Spike Dup (W3A1271-MSD1) S Nitrate as N		A16037-04 0.040	0.20	mg/l	Prepared & A 2.00	ND	103	90-110	0.5	20	
Nitrite as N	1000	42	100	ug/l	1000	ND	100	90-110	1	20	
NO2+NO3 as N	2060	36	200	ug/l	2000	ND	103	90-110	0.5	20	
A-b. 18/2.4.1.402 CM 25/40C											
atch: W3A1402 - SM 2540C											
Blank (W3A1402-BLK1) Total Dissolved Solids	- ND	4.0	10	Pre mg/l	pared: 01/17/2	23 Analyzed:	01/18/23	3			
Total Dissolved Guilds	IND	4.0	10	mg/i							
LCS (W3A1402-BS1)	0.40	4.0	40		pared: 01/17/2	23 Analyzed:					
Total Dissolved Solids	- 842	4.0	10	mg/l	824		102	97-103			
		A13145-01			pared: 01/17/2	•	01/18/2	3			
Total Dissolved Solids	- 831	4.0	10	mg/l		828			0.4	10	
Duplicate (W3A1402-DUP2) S	ource: 3	A16034-01		Pre	pared: 01/17/2	23 Analyzed:	01/18/2	3			
Total Dissolved Solids	- 863	4.0	10	mg/l		826			4	10	
atch: W3A1715 - SM 2540D											
Blank (W3A1715-BLK1)					Prepared & A	nalvzed: 01/2	20/23				
Total Suspended Solids	0.700		5	mg/l		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,				
.CS (W3A1715-BS1)					Prepared & A	nalvzed: 01/3	20/23				
Total Suspended Solids	56.5		5	mg/l	52.5		108	90-110			
Dunlicato (W2A171E DUD1)	ourca: 3	A15017 01			Drangrad Q: A	naluzod: 01 /	20/22				
Duplicate (W3A1715-DUP1) S Total Suspended Solids	ource: 3 - 33.6	A15017-01	5	mg/l	Prepared & A	30.6	20/23		9	10	
·		.48045.55		J							
Duplicate (W3A1715-DUP2) S Total Suspended Solids	ource: 3. 276	A15019-05	5	mg/l	Prepared & A	nalyzed: 01/7 288	20/23		4	10	

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

03/03/2023 13:52

Quality Control Results

Conventional Chemistry/Physical Parameters by API	HA/EPA/AST	M Methods	(Continue	d)							
					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
tch: W3A2084 - EPA 350.1											
Blank (W3A2084-BLK1)				Pre	pared: 01/25/23	Analyzed:	01/27/23				
Ammonia as N	ND	0.017	0.10	mg/l		•					
Plant (M2A2004 PLV2)				Dro	narod: 01/25/22	Analyzod	. 01 /27 /22				
Blank (W3A2084-BLK2) Ammonia as N	ND	0.017	0.10	mg/l	pared: 01/25/23	Allalyzeu	01/21/23				
LCS (W3A2084-BS1)					pared: 01/25/23	Analyzed:					
Ammonia as N	0.251	0.017	0.10	mg/l	0.250		100	90-110			
LCS (W3A2084-BS2)				Pre	pared: 01/25/23	Analyzed:	01/27/23				
Ammonia as N	0.250	0.017	0.10	mg/l	0.250		100	90-110			
Matrix Spike (W3A2084-MS1)	Source: 3	A23015-01		Pre	pared: 01/25/23	Analyzed:	01/27/23				
Ammonia as N			0.10	mg/l	0.250	0.0549	97	90-110			
				_							
Matrix Spike (W3A2084-MS2) Ammonia as N		A23026-02 0.017	0.10	Pre mg/l	pared: 01/25/23 0.250	Analyzed: 0.123	97	90-110			
Allinonia as N	0.500	0.017	0.10	ilig/i	0.230	0.123	31	30-110			
Matrix Spike Dup (W3A2084-MSD1)		A23015-01		Pre	pared: 01/25/23	-					
Ammonia as N	0.298	0.017	0.10	mg/l	0.250	0.0549	97	90-110	0.4	15	
Matrix Spike Dup (W3A2084-MSD2)	Source: 3	A23026-02		Pre	pared: 01/25/23	Analyzed:	01/27/23				
Ammonia as N	0.370	0.017	0.10	mg/l	0.250	0.123	99	90-110	1	15	
atch: W3A2387 - EPA 351.2											
				_	1 04 (00 (00		04/04/00				
Blank (W3A2387-BLK1) TKN	ND	0.065	0.10	mg/l	pared: 01/28/23	Analyzed	01/31/23				
TIM		0.000	0.10	1119/1							
Blank (W3A2387-BLK2)					pared: 01/28/23	Analyzed:	01/31/23				
TKN	ND	0.065	0.10	mg/l							
LCS (W3A2387-BS1)				Pre	pared: 01/28/23	Analyzed:	01/31/23				
TKN	0.938	0.065	0.10	mg/l	1.00		94	90-110			
LCS (W3A2387-BS2)				Dro	pared: 01/28/23	Analyzed	01/31/23				
TKN	0.941	0.065	0.10	mg/l	1.00	Analyzea	94	90-110			
Matrix Spike (W3A2387-MS1) TKN		A12149-07	0.10	mg/l	pared: 01/28/23 1.00	Analyzed: 0.183	106				
IRIN	1.25	0.005	0.10	mg/i	1.00	0.103	100	90-110			
Matrix Spike (W3A2387-MS2)		A12149-08		Pre	pared: 01/28/23						
TKN	1.19	0.065	0.10	mg/l	1.00	0.236	95	90-110			
Matrix Spike Dup (W3A2387-MSD1)	Source: 3	A12149-07		Pre	pared: 01/28/23	Analyzed:	01/31/23				
TKN · · · · · · · · · · · · · · · · · · ·	1.26	0.065	0.10	mg/l	1.00	0.183	108	90-110	1	10	
Matrix Saika Dun (M2A2207 MSD2)	Source: 3	A 1 2 1 4 0 0 0		D	narod: 01/20/22	Analyzad	01/21/22				
Matrix Spike Dup (W3A2387-MSD2) TKN	Source: 3	A12149-08 0.065	0.10	mg/l	pared: 01/28/23 1.00	0.236	101/31/23	90-110	5	10	

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

03/03/2023 13:52

Quality Control Results

Hexavalent Chromium by IC											
					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
Batch: W3A1651 - EPA 218.6											
Blank (W3A1651-BLK1)					Prepared & A	nalyzed: 01/1	9/23				
Chromium 6+	ND	0.0079	0.020	ug/l							
Chromium 6+, Dissolved	ND	0.0079	0.020	ug/l							
LCS (W3A1651-BS1)					Prepared & A	nalyzed: 01/1	9/23				
Chromium 6+	5.12	0.0079	0.020	ug/l	5.00		102	90-110			
Chromium 6+, Dissolved	5.12	0.0079	0.020	ug/l	5.00		102	90-110			
Matrix Spike (W3A1651-MS1)	Source: 3	A15019-01			Prepared & A	nalyzed: 01/1	9/23				
Chromium 6+	5.34	0.0079	0.020	ug/l	5.00	0.205	103	88-112			
Chromium 6+, Dissolved	5.34	0.0079	0.020	ug/l	5.00	0.234	102	88-112			
Matrix Spike Dup (W3A1651-MSD1)	Source: 3	A15019-01			Prepared & A	nalyzed: 01/1	9/23				
Chromium 6+	5.46	0.0079	0.020	ug/l	5.00	0.205	105	88-112	2	10	
Chromium 6+, Dissolved	5.46	0.0079	0.020	ug/l	5.00	0.234	105	88-112	2	10	

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

03/03/2023 13:52

3A15019

Quality Control Results

(Continued)

Page 20 of 28

Metals by EPA 200 Series Methods											
					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifi
atch: W3A2172 - EPA 245.1											
Blank (W3A2172-BLK1) Mercury. Dissolved	ND	0.037	0.050		pared: 01/26/2	23 Analyzed:	01/27/2	3			
3 /		0.037	0.050	ug/l							
Mercury, Total	ND	0.037	0.050	ug/l							
LCS (W3A2172-BS1)		0.007	0.050		pared: 01/26/2	23 Analyzed:					
Mercury, Dissolved		0.037	0.050	ug/l	1.00		114	85-115			
Mercury, Total	- 1.14	0.037	0.050	ug/l	1.00		114	85-115			
		L15007-01		Pre	pared: 01/26/2	23 Analyzed:	01/27/2	3			
Mercury, Dissolved		0.037	0.050	ug/l	1.00	ND	98	70-130			
Mercury, Total	0.982	0.037	0.050	ug/l	1.00	ND	98	70-130			
Matrix Spike (W3A2172-MS2)	ource: 3	A17145-03		Pre	pared: 01/26/2	23 Analyzed:	01/27/2	3			
Mercury, Dissolved	1.21	0.037	0.050	ug/l	1.00	ND	121	70-130			
Mercury, Total	- 1.21	0.037	0.050	ug/l	1.00	ND	121	70-130			
Matrix Spike Dup (W3A2172-MSD1) S	ource: 2	L15007-01		Pre	pared: 01/26/2	23 Analyzed:	01/27/2	3			
Mercury, Dissolved	- 1.08	0.037	0.050	ug/l	1.00	ND	108	70-130	10	20	
Mercury, Total	1.08	0.037	0.050	ug/l	1.00	ND	108	70-130	10	20	
Matrix Spike Dup (W3A2172-MSD2) S	ource: 3	A17145-03		Pre	pared: 01/26/2	23 Analyzed:	01/27/2	2			
Mercury, Dissolved		0.037	0.050	ug/l	1.00	ND	107	70-130	12	20	
Mercury, Total	1.07	0.037	0.050	ug/l	1.00	ND	107	70-130	12	20	
atch: W3A2419 - EPA 200.7											
Blank (W3A2419-BLK1)				Pre	pared: 01/30/2	23 Analyzed:	01/31/2	3			
Calcium, Total	ND	0.0736	0.500	mg/l							
Magnesium, Total	ND	0.0390	0.500	mg/l							
Phosphorus, Dissolved	ND	0.018	0.050	mg/l							
Phosphorus, Total	ND	0.018	0.050	mg/l							
LCS (W3A2419-BS1)				Pre	pared: 01/30/2	23 Analyzed:	01/31/2	3			
Calcium, Total	49.3	0.0736	0.500	mg/l	50.2	,	98	85-115			
Magnesium, Total	48.5	0.0390	0.500	mg/l	50.2		97	85-115			
Phosphorus, Dissolved	2.12	0.018	0.050	mg/l	2.00		106	85-115			
Phosphorus, Total	2.12	0.018	0.050	mg/l	2.00		106	85-115			
Matrix Smiles (M/2 A 2 A 1 O BAS1)		A 1 E O 1 O O 1		Duo	marradi 01/20/2)	01/21/2	,			
Matrix Spike (W3A2419-MS1) S Calcium, Total		0.0736	0.500	mg/l	pared: 01/30/2 50.2	23 Analyzed: 21.1	98	70-130			
Magnesium, Total		0.0390	0.500	mg/l	50.2	7.36	97	70-130			
Phosphorus, Dissolved		0.018	0.050	mg/l	2.00	0.0726	111	70-130			
Phosphorus, Total		0.018	0.050	mg/l	2.00	0.219	104	70-130			
,											
Matrix Spike (W3A2419-MS2) Calcium. Total		0.0736	0.500	Pre mg/l	pared: 01/30/2 50.2	23 Analyzed: 1.52	01/31/2 3	3 70-130			
Magnesium, Total		0.0730	0.500	mg/l	50.2	0.592	97	70-130			
Phosphorus, Dissolved		0.0390	0.050	mg/l	2.00	0.0816	105	70-130			
i nospiiolus, Dissolveu	- 2.10	0.010	0.000	1119/1	2.00	0.0010	103	10-130			

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123

Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

03/03/2023 13:52

Quality Control Results

(Continued)

Metals by EPA 200 Series Methods (Continued)										
				Spike	Source		%REC		RPD	
Analyte Resu	t MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
atch: W3A2419 - EPA 200.7 (Continued)										
Matrix Spike Dup (W3A2419-MSD1) Source Calcium, Total 70.	:: 3A15019- 4 0.0736		Pre mg/l	pared: 01/30/ 50.2	23 Analyzed: 21.1	98	3 70-130	0.4	30	
Magnesium, Total 56.			mg/l	50.2	7.36	98	70-130	0.6	30	
Phosphorus, Dissolved 2.3		0.050	mg/l	2.00	0.0726	112	70-130	0.8	30	
Phosphorus, Total 2.3		0.050	mg/l	2.00	0.219	104	70-130	0.8	30	
rilospilorus, iotai	0.010	0.030	-					0.0	30	
Matrix Spike Dup (W3A2419-MSD2) Source Calcium, Total 51.	: 3A18050 - 2 0.0736		Pre mg/l	pared: 01/30/ 50.2	23 Analyzed: 1.52	99	3 70-130	0.3	30	
Magnesium, Total 49.			mg/l	50.2	0.592	97	70-130	0.5	30	
Phosphorus, Dissolved 2.1		0.050	mg/l	2.00	0.0816	105	70-130	0.06	30	
Phosphorus, Total 2.1		0.050	mg/l	2.00	0.0816	105	70-130	0.06	30	
riiospiiotus, totai	0.010	0.030	mg/i	2.00	0.0010	100	70-130	0.00	30	
atch: W3A2421 - EPA 200.8										
Blank (W3A2421-BLK1)				pared: 01/30/	23 Analyzed:	02/01/2	3			
Aluminum, Dissolved N		20	ug/l							
Aluminum, Total N		20	ug/l							
Antimony, Dissolved N		0.50	ug/l							
Antimony, Total N		0.50	ug/l							
Arsenic, Dissolved N		0.40	ug/l							
Arsenic, Total N		0.40	ug/l							
Beryllium, Dissolved N		0.10	ug/l							
Beryllium, Total N	0.029	0.10	ug/l							
Cadmium, Dissolved N	0.042	0.20	ug/l							
Cadmium, Total N	0.042	0.20	ug/l							
Chromium, Dissolved N	0.089	0.20	ug/l							
Chromium, Total N	0.089	0.20	ug/l							
Copper, Dissolved N	0.23	0.50	ug/l							
Copper, Total N	0.23	0.50	ug/l							
Iron, Dissolved N	3.9	20	ug/l							
Iron, Total N	3.9	20	ug/l							
Lead, Dissolved N	0.083	0.20	ug/l							
Lead, Total N	0.083	0.20	ug/l							
Nickel, Dissolved N	0.16	2.0	ug/l							
Nickel, Total N	0.40	2.0	ug/l							
Selenium, Dissolved N	0.067	0.40	ug/l							
Selenium, Total N	0.067	0.40	ug/l							
Silver, Dissolved N	0.030	0.20	ug/l							
Silver, Total N	0.055	0.20	ug/l							
Thallium, Dissolved N	0.021	0.20	ug/l							
Thallium, Total N	0.021	0.20	ug/l							
Zinc, Dissolved N	0.80	10	ug/l							
Zinc, Total N	0 1.7	10	ug/l							
A15019										Page 21 c

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

03/03/2023 13:52

Quality Control Results

Metals by EPA 200 Series Methods (Continu	neq)										
					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
tch: W3A2421 - EPA 200.8 (Continued)											
Blank (W3A2421-BLK1)				Pre	pared: 01/30/2	23 Analyzed:	02/01/2	3			
CS (W3A2421-BS1) Aluminum Dissolved	FO 4	4.4	20		pared: 01/30/2	23 Analyzed:					
Administry, Dissolved		4.4	20	ug/l	50.0		101	85-115			
		4.4	20	ug/l	50.0		101	85-115			
, ,		0.089	0.50	ug/l	50.0		103	85-115			
Antimony, Total Arsenic. Dissolved		0.089	0.50	ug/l	50.0		103	85-115			
		0.074	0.40	ug/l	50.0		103	85-115			
Arsenic, Total		0.074	0.40	ug/l	50.0		103	85-115			
Beryllium, Dissolved		0.062	0.10	ug/l	50.0		98	85-115			
Beryllium, Total		0.029	0.10	ug/l	50.0		98	85-115			
Cadmium, Dissolved		0.042	0.20	ug/l	50.0		101	85-115			
Cadmium, Total		0.042	0.20	ug/l	50.0		101	85-115			
Chromium, Dissolved		0.089	0.20	ug/l	50.0		101	85-115			
Chromium, Total	00.0	0.089	0.20	ug/l	50.0		101	85-115			
Copper, Dissolved		0.23	0.50	ug/l	50.0		100	85-115			
Copper, Total	49.9	0.23	0.50	ug/l	50.0		100	85-115			
Iron, Dissolved	1050	3.9	20	ug/l	1050		100	85-115			
Iron, Total	1050	3.9	20	ug/l	1050		100	85-115			
Lead, Dissolved	50.5	0.083	0.20	ug/l	50.0		101	85-115			
Lead, Total	50.5	0.083	0.20	ug/l	50.0		101	85-115			
Nickel, Dissolved	49.4	0.16	2.0	ug/l	50.0		99	85-115			
Nickel, Total	49.4	0.40	2.0	ug/l	50.0		99	85-115			
Selenium, Dissolved	50.0	0.067	0.40	ug/l	50.0		100	85-115			
Selenium, Total	50.0	0.067	0.40	ug/l	50.0		100	85-115			
Silver, Dissolved	49.4	0.030	0.20	ug/l	50.0		99	85-115			
Silver, Total	49.4	0.055	0.20	ug/l	50.0		99	85-115			
Thallium, Dissolved	50.0	0.021	0.20	ug/l	50.0		100	85-115			
Thallium, Total	50.0	0.021	0.20	ug/l	50.0		100	85-115			
Zinc, Dissolved	49.7	0.80	10	ug/l	50.0		99	85-115			
Zinc, Total	49.7	1.7	10	ug/l	50.0		99	85-115			
latriv Spika (IMZA2A21 RAS1)	Sauras 3	A15019-02		D	pared: 01/30/2	O Apolicad	02/01/2	2			
latrix Spike (W3A2421-MS1) Aluminum, Total		4.4	20	ug/l	50.0	3560	02/01/2: NR	70-130			MS-
Antimony, Total	48.6	0.089	0.50	ug/l	50.0	0.969	95	70-130			
Arsenic, Total		0.074	0.40	ug/l	50.0	1.74	103	70-130			
Beryllium, Total		0.029	0.10	ug/l	50.0	0.200	101	70-130			
Cadmium, Total		0.042	0.20	ug/l	50.0	0.0762	102	70-130			
Chromium, Total		0.042	0.20	ug/l	50.0	4.86	98	70-130			
Copper, Total		0.009	0.50	ug/l	50.0	13.0	99	70-130			
Iron, Total		3.9	20	_	1050	4150	114	70-130			
,				ug/l							
Lead, Total	61.2	0.083	0.20	ug/l	50.0	10.3	102	70-130			

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123

Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

03/03/2023 13:52

Quality Control Results

Metals by EPA 200 Series Methods (Continue	d)										
Analyte	Result	MDL	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
atch: W3A2421 - EPA 200.8 (Continued)											
Matrix Spike (W3A2421-MS1)	Source: 3	A15019-02		Prej	pared: 01/30/	23 Analyzed:	02/01/23	3			
Nickel, Total	53.3	0.40	2.0	ug/l	50.0	3.98	99	70-130			
Selenium, Total	50.4	0.067	0.40	ug/l	50.0	ND	101	70-130			
Silver, Total	50.8	0.055	0.20	ug/l	50.0	ND	102	70-130			
Thallium, Total	51.0	0.021	0.20	ug/l	50.0	0.0256	102	70-130			
Zinc, Total	129	1.7	10	ug/l	50.0	75.2	108	70-130			
Matrix Spike (W3A2421-MS2)	Source: 3	A18141-01		Pre	pared: 01/30/	23 Analyzed:	02/01/23	3			
Aluminum, Total	58.5	4.4	20	ug/l	50.0	6.32	104	70-130			
Antimony, Total	52.8	0.089	0.50	ug/l	50.0	0.598	104	70-130			
Arsenic, Total	51.4	0.074	0.40	ug/l	50.0	0.759	101	70-130			
Beryllium, Total	50.8	0.029	0.10	ug/l	50.0	ND	101	70-130			
Cadmium, Total		0.042	0.20	ug/l	50.0	ND	100	70-130			
Chromium, Total	49.6	0.089	0.20	ug/l	50.0	0.214	99	70-130			
Copper, Total		0.23	0.50	ug/l	50.0	2.86	99	70-130			
Iron, Total	1110	3.9	20	ug/l	1050	65.2	99	70-130			
Lead, Total	51.1	0.083	0.20	ug/l	50.0	0.137	102	70-130			
Nickel, Total	51.2	0.40	2.0	ug/l	50.0	2.01	98	70-130			
Selenium, Total	49.6	0.067	0.40	ug/l	50.0	0.492	98	70-130			
Silver, Dissolved	49.5	0.030	0.20	ug/l	50.0	ND	99	70-130			
Silver, Total	49.5	0.055	0.20	ug/l	50.0	ND	99	70-130			
Thallium, Total	50.6	0.021	0.20	ug/l	50.0	ND	101	70-130			
Zinc, Total		1.7	10	ug/l	50.0	29.8	98	70-130			
Matrix Spike Dup (W3A2421-MSD1)	Source: 3	A15019-02		Prei	pared: 01/30/	23 Analyzed:	02/01/2	2			
Aluminum, Total		4.4	20	ug/l	50.0	3560	NR	70-130	0.7	30	MS-02
Antimony, Total	48.3	0.089	0.50	ug/l	50.0	0.969	95	70-130	0.5	30	
Arsenic, Total	52.5	0.074	0.40	ug/l	50.0	1.74	101	70-130	1	30	
Beryllium, Total	49.9	0.029	0.10	ug/l	50.0	0.200	99	70-130	2	30	
Cadmium, Total	52.1	0.042	0.20	ug/l	50.0	0.0762	104	70-130	1	30	
Chromium, Total	55.5	0.089	0.20	ug/l	50.0	4.86	101	70-130	2	30	
Copper, Total	65.4	0.23	0.50	ug/l	50.0	13.0	105	70-130	5	30	
Iron, Total	5680	3.9	20	ug/l	1050	4150	145	70-130	6	30	MS-0
Lead, Total	61.6	0.083	0.20	ug/l	50.0	10.3	102	70-130	0.6	30	
Nickel, Total	55.8	0.40	2.0	ug/l	50.0	3.98	104	70-130	5	30	
Selenium, Total	50.5	0.067	0.40	ug/l	50.0	ND	101	70-130	0.2	30	
Silver, Total	51.8	0.055	0.20	ug/l	50.0	ND	103	70-130	2	30	
Thallium, Total		0.021	0.20	ug/l	50.0	0.0256	102	70-130	0.1	30	
Zinc, Total		1.7	10	ug/l	50.0	75.2	102	70-130	2	30	
Matrix Spike Dup (W3A2421-MSD2)	Source: 3	A18141-01		Pre	pared: 01/30/	23 Analyzed:	02/01/23	3			
Aluminum, Total		4.4	20	ug/l	50.0	6.32	105	70-130	0.7	30	
Antimony, Total	53.1	0.089	0.50	ug/l	50.0	0.598	105	70-130	0.6	30	

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

03/03/2023 13:52

Quality Control Results

Metals by EPA 200 Series Methods (Continued)				<u> </u>							
					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
Batch: W3A2421 - EPA 200.8 (Continued)											
Matrix Spike Dup (W3A2421-MSD2)	Source: 3	A18141-01		Prepa	ared: 01/30/2	23 Analyzed:	02/01/2	3			
Arsenic, Total	- 52.2	0.074	0.40	ug/l	50.0	0.759	103	70-130	2	30	
Beryllium, Total	- 51.5	0.029	0.10	ug/l	50.0	ND	103	70-130	1	30	
Cadmium, Total	50.6	0.042	0.20	ug/l	50.0	ND	101	70-130	8.0	30	
Chromium, Total	- 51.0	0.089	0.20	ug/l	50.0	0.214	101	70-130	3	30	
Copper, Total	- 55.6	0.23	0.50	ug/l	50.0	2.86	105	70-130	6	30	
Iron, Total	- 1150	3.9	20	ug/l	1050	65.2	104	70-130	4	30	
Lead, Total	- 51.6	0.083	0.20	ug/l	50.0	0.137	103	70-130	1	30	
Nickel, Total	- 53.4	0.40	2.0	ug/l	50.0	2.01	103	70-130	4	30	
Selenium, Total	- 50.0	0.067	0.40	ug/l	50.0	0.492	99	70-130	0.9	30	
Silver, Total	- 50.9	0.055	0.20	ug/l	50.0	ND	102	70-130	3	30	
Thallium, Total	- 51.7	0.021	0.20	ug/l	50.0	ND	103	70-130	2	30	
Zinc, Total	- 80.6	1.7	10	ug/l	50.0	29.8	102	70-130	2	30	

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

03/03/2023 13:52

Quality Control Results

Semivolatile Organics - Low Level by Tande	m GC/MS/MS										
Analyte	Result	MDL	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifi
atch: W3A1700 - EPA 625.1											2
Blank (W3A1700-BLK1)				Pre	pared: 01/20/2	3 Analyzed:	01/21/23	3			
Acenaphthene	· · · · · · · · · · · · · · · ND	1.2	5.0	ng/l		•					
Acenaphthylene	· · · · · · · · · · · · · · ND	1.0	5.0	ng/l							
Anthracene	ND	1.1	5.0	ng/l							
Benzo (a) anthracene	ND	0.92	5.0	ng/l							
Benzo (a) pyrene	· · · · · · · · · · · · · · · ND	0.97	5.0	ng/l							
Benzo (b) fluoranthene	ND	1.6	5.0	ng/l							
Benzo (g,h,i) perylene	ND	1.0	5.0	ng/l							
Benzo (k) fluoranthene	ND	1.2	5.0	ng/l							
Chrysene	ND	1.4	5.0	ng/l							
Dibenzo (a,h) anthracene	ND	1.2	5.0	ng/l							
Fluoranthene	· ND	1.5	5.0	ng/l							
Fluorene	ND	1.1	5.0	ng/l							
Indeno (1,2,3-cd) pyrene	· ND	0.97	5.0	ng/l							
Naphthalene	· ND	3.2	5.0	ng/l							
Phenanthrene	· ND	3.0	5.0	ng/l							
Pyrene · · · · · · · · · · · · · · · · · ·		1.4	5.0	ng/l							
Surrogate(s) 1,3-Dimethyl-2-nitrobenzene				ng/l	100		103	62-120			
Perylene-d12	72.4			ng/l	100		72	36-120			
LCS (W3A1700-BS1)				Pre	pared: 01/20/2	3 Analyzed	01/21/23	3			
Acenaphthene	40.8	1.2	5.0	ng/l	50.0		82	60-132			
Acenaphthylene	41.0	1.0	5.0	ng/l	50.0		82	54-126			
Anthracene	38.9	1.1	5.0	ng/l	50.0		78	43-120			
Benzo (a) anthracene	33.2	0.92	5.0	ng/l	50.0		66	42-133			
Benzo (a) pyrene	21.8	0.97	5.0	ng/l	50.0		44	32-148			
Benzo (b) fluoranthene		1.6	5.0	ng/l	50.0		57	42-140			AN-
Benzo (g,h,i) perylene	14.7	1.0	5.0	ng/l	50.0		29	0.1-195			
Benzo (k) fluoranthene	24.1	1.2	5.0	ng/l	50.0		48	25-146			AN-
Chrysene	30.8	1.4	5.0	ng/l	50.0		62	44-140			
Dibenzo (a,h) anthracene	14.3	1.2	5.0	ng/l	50.0		29	0.1-200			
Fluoranthene	40.2	1.5	5.0	ng/l	50.0		80	43-121			
Fluorene	40.9	1.1	5.0	ng/l	50.0		82	70-120			
Indeno (1,2,3-cd) pyrene	16.5	0.97	5.0	ng/l	50.0		33	0.1-151			
Naphthalene	39.5	3.2	5.0	ng/l	50.0		79	36-120			
Phenanthrene	41.3	3.0	5.0	ng/l	50.0		83	65-120			
Pyrene		1.4	5.0	ng/l	50.0		78	70-120			
Surrogate(s) 1,3-Dimethyl-2-nitrobenzene	82.3			ng/l	100		82	62-120			
Perylene-d12	63.2			ng/l	100		63	36-120			

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

03/03/2023 13:52

Quality Control Results

					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
atch: W3A1700 - EPA 625.1 (Continued)											
LCS Dup (W3A1700-BSD1)				Pre	oared: 01/20/2	23 Analyzed: (01/21/23	3			
Acenaphthene		1.2	5.0	ng/l	50.0		88	60-132	7	30	
Acenaphthylene	44.1	1.0	5.0	ng/l	50.0		88	54-126	7	30	
Anthracene		1.1	5.0	ng/l	50.0		85	43-120	9	30	
Benzo (a) anthracene	32.9	0.92	5.0	ng/l	50.0		66	42-133	1	30	
Benzo (a) pyrene	20.9	0.97	5.0	ng/l	50.0		42	32-148	4	30	
Benzo (b) fluoranthene	28.7	1.6	5.0	ng/l	50.0		57	42-140	1	30	AN-I
Benzo (g,h,i) perylene	15.7	1.0	5.0	ng/l	50.0		31	0.1-195	6	30	
Benzo (k) fluoranthene	24.2	1.2	5.0	ng/l	50.0		48	25-146	0.5	30	AN-
Chrysene		1.4	5.0	ng/l	50.0		61	44-140	1	30	
Dibenzo (a,h) anthracene	15.7	1.2	5.0	ng/l	50.0		31	0.1-200	9	30	
Fluoranthene	43.9	1.5	5.0	ng/l	50.0		88	43-121	9	30	
Fluorene	- 44.8	1.1	5.0	ng/l	50.0		90	70-120	9	30	
Indeno (1,2,3-cd) pyrene	17.2	0.97	5.0	ng/l	50.0		34	0.1-151	4	30	
Naphthalene		3.2	5.0	ng/l	50.0		89	36-120	12	30	
Phenanthrene	45.1	3.0	5.0	ng/l	50.0		90	65-120	9	30	
Pyrene	42.4	1.4	5.0	ng/l	50.0		85	70-120	8	30	
Surrogate(s)											
1,3-Dimethyl-2-nitrobenzene	97.5			ng/l	100		98	62-120			
Perylene-d12	72.9			ng/l	100		73	36-120			

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

03/03/2023 13:52

Item

Notes and Definitions

AN-IP	Sample results for structural isomers may have contribution from their isomeric pair.
J	Estimated conc. detected <mrl and="">MDL.</mrl>
M-02	Due to the nature of matrix interferences, sample was diluted prior to preparation. The MDL and MRL were raised due to the dilution.
MS-01	The spike recovery for this QC sample is outside of established control limits possibly due to sample matrix interference.
MS-02	The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte inherent in the sample.
ND	Not Detected
%REC	Percent Recovery
Dil	Dilution
MDL	Method Detection Limit
MRL	The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. The MRL is also known as Limit of Quantitation (LOQ)
ND	NOT DETECTED at or above the Method Reporting Limit (MRL). If Method Detection Limit (MDL) is reported, then ND means not detected at or above the MDL.
RPD	Relative Percent Difference
Source	Sample that was matrix spiked or duplicated.

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

All results are expressed on wet weight basis unless otherwise specified.

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

1	1	,			
---	---	---	--	--	--

Page <u>|</u> of <u>|</u>

				Lab Notes:								
WSP Environment & Infrastructure Solutions Weck Laboratories												
9177 Sky Park Court 14859 Clark Avenu												
San Diego, CA 92123 Industry, CA 91745		15										
(661) 373-5505		(626) 336-2139										
(858) 278-5300 Fax (626) 336-2634 Fax			ax									
Contact: Brenda Stevens/Kimberly Henry Contact: Chris Samatmanakit			matmanakit	<u></u>								
PO#: Project Number:				Project Name:	Sample Matrix:							
C015102726	5025-	22-0004		SGVCOG Fire Effects Study	Water							
SampleID	Sample Date	I Sample lime		Analysis	Container	Pres	No. of Bottles					
F-193B-R_2223_W1_01		2200	Composite	Tot&Diss.Metal,Ammonia, Nutrients(N03,N02,TKN, TotN,TotP,DissP), Chlorophyll-a, PAH	19L Carboy	≤6°C	1					
F-194B-R_2223_W1_01	1-14-23	2215	Composite	Tot&Diss.Metal,Ammonia, Nutrients(N03,N02,TKN, TotN,TotP,DissP), Chlorophyll-a, PAH	19L Carboy	≤6°C	1					
ARCAD_WA_CON_2223_W1_01	1-15-23	0130	Composite	Tot&Diss.Metal,Ammonia, Nutrients(N03,N02,TKN, TotN,TotP,DissP), Chlorophyll-a, PAH	19L Carboy	≤6°C	1					
F-193B-R_2223_W1_01	1-14-23	1545	Grab	TDS (SM 2540C); TSS (SM 2540D)	2-L Poly	Unpres.	1					
F-194B-R_2223_W1_01		1530	Grab	TDS (SM 2540C); TSS (SM 2540D)	2-L Poly	Unpres.	1					
ARCAD_WA_CON_2223_W1_01		1528	Grab	TDS (SM 2540C); TSS (SM 2540D)	2-L Poly	Unpres.	1					
F-193B-R_2223_W1-02		1545		TDS (SM 2540C); TSS (SM 2540D)	2-L Poly	Unpres.	1					
F-193B-R_2223_W1_01		1545		Total Hardness (EPA 200.7)	500-mL Poly	HNO3	1					
F-194B-R_2223_W1_01		1530	Grab	Total Hardness (EPA 200.7)	500-mL Poly	HNO3	1					
ARCAD_WA_CON_2223_W1_01		1528	Grab	Total Hardness (EPA 200.7)	500-mL Poly	HNO3	1					
F-193B-R_2223_W1-02		1545	Grab	Total Hardness (EPA 200.7)	500-mL Poly	HNO3	1					
Special Instructions/Comments:												
Metals (Dissolved and Total) to include a Please provide results to Brenda Steven	luminum, antimon s (brenda.stevens	y, arsenic, berylliur @wsp.com) and Lu	m, cadmium, chromi uis De La Torre (luis	um (total), chromium (hexavalent), copper, iron, lead, mercury, nickel, selenium, silver, .delatorre@wsp.com) Sample alia, usts delivered . Composition	thallium, and zinc	enailed Chri	to 55.					
Sampled and Relinquished By:				Received By:	, , , , , , , , , , , , , , , , , , , ,		₽ 3					
Print: Lvis De Laterse		Date/Time: 况 🗸 -	15-23	Print: Chrs Sanctmemdert Sign: Classification	Date/Time:) /15/2	3 -	-0269					
Sign: Lis De La Journ	,·	· · · · · · · · · · · · · · · · · · ·	11:20	Sign: 66 6 7 2								
Print:		Date/Time:		Print: Date/Time:								
Sign:				Sign:								
Print:		Date/Time:		Print: Date/Time:								
Sign:				Sign:								

Total composite Volume (mL)	15	14	13	12	11	10	9	8	7	6	5	4	ω	2	בי	ARCAD_WA_CON Bottle Number
7000	16	51	102	137	227	555	446	486	744	851	936	909	876	397	267	Aliquot volume for Composite (mL)

Total composite Volume (mL)	11	10	9	∞	7	6	ហ	4	ω	2	1	F193B-R Bottle Number
6001	178	588	989	484	719	719	286	678	806	316	238	Aliquot volume for Composite (mL)

Total composite Volume (mL)	11	9	∞	7	6	ហ	4	ω	2	1	F194B-R Bottle Number
5600	55	620 174	659	782	280	162	280	782	990	816	Aliquot volume for Composite (mL)

Subcontract Order

Subcontracted Laboratory:

Orange, CA 92868 Phone: (714) 771-6900 Fax: (714) 538-1209 Enthalpy Analytical 931 W. Barkley Ave

Project Manager: Turn Around Time:

Project Name: San Gabriel Valley Council of Governn

Project Number:

SGVCOG Fire Effects Study

Chris Samatmanakit Normal unless noted in comments

Sampler Employed by: (No

Need Transfer File (xls): **Drinking Water:** Tracking Number:

Yes / No

Work Order: 3A15019

Sample comment: Sample ID: 3A15019-01/F_193B_R-2223_W1_01 Expires

Matrix: Water Sampled By: Luis De La Torre **Sampled:** 01/14/2023

22:00

Comments

01/16/2023 22:00 1040mL filtered on 1/15/23 at 15:34 by CSS. TestAmerica EDD needed.

Containers Supplied: Plastic Bag (J)

Chlorophyll-a - SM 10200H

Sample comment: Sample ID: 3A15019-02/F_194B_R-2223_W1_01

Matrix: Water Sampled By: Luis De La Torre Sampled: 01/14/2023 22:15

01/16/2023 22:15

948mL filtered on 1/15/23 at 15:53 by CSS. TestAmerica EDD needed.

Sample comment: Sample ID: 3A15019-03/ARCAD_WA_CON_2223_W1_01

Containers Supplied: Plastic Bag (J)

Chlorophyll-a - SM 10200H

01/17/2023 01:30

1028mL filtered on 1/15/23 at 16:24 by CSS. Matrix: Water Sampled By: Luis De La Torre Sampled: 01/15/2023 01:30 TestAmerica

EDD needed.

Containers Supplied: Plastic Bag (J)

Chlorophyll-a - SM 10200H

Remarks / Special Comments:

Sample Condition

Temperature:

Preserved: Ύes <u>Z</u>

Evidence Seal Intact: Yes 8

Container Attacked:

Yes

8

Preserved at Lab: Yes

Relinqished By Relinqished By Date / Time Date / Time Received By Received By Date / Time Date / Time Page 1 of 1

14859 Clark Avenue, City of Industry CA, 91745 | Phone: (626) 336-2139 | Fax: (626) 336-2634 www.wecklabs.com

Sample Receipt Checklist

	Weck WKO: 3A15019		Date/	Date/Time Received:	/ed: 01/15/23 @ 11:20
V Samp	1 1			# of Samples: Delivered by:	1 1
	Task	Yes	N _O	N/A	Comments
	COC present at receipt?	3 ⊠			1 1
IC	COC matches sample labels?				Marie de la companya
CC					
	Project Manager notified?				
	Sample Temperature	2.4 °C]		
n	Samples received on ice?	\boxtimes			
natio	Ice Type (Blue/Wet) All samples intact?	XI			
orn	Samples in proper containers?	☑ (]		
Info	Sufficient sample volume?				
eipt	Samples intact?	\boxtimes			
Rec	Received within holding time?				
	Project Manager notified?			\boxtimes	
	Sample labels checked for correct preservation?				
ation?	VOC Headspace: (No) none, If Yes (See comment) 524.2, 524.3, 624.1, 8260, 1666 P/T, LUFT			\boxtimes	□ <6mm/Pea size?
tion Verific	pH verified upon receipt? Metals <2; H2SO4 pres tests <2; 522<4; TOC <2; 508.1, 525.2<2; 6710B<2; 608.3 5-9	\boxtimes			pH paper Lot# 2071882
eserva	Free Chlorine Tested < 0.1			\boxtimes	Cl Test Strip Lot# 061221E
Sample Pro	O&G pH <2 verified? pH adjusted for O&G				pH paper Lot# pH Reading: A Second Lot# Amt added: Second Lot#
PM Co	PM Comments				
Sample	₩			ק.	
Signature:	cure: Jaime Gomez			Di	Date: 01/16/23

1.41/5.2

Subcontract Order

WECK LABORATORIES, INC

931 W. Barkley Ave Orange, CA 92868 Phone: (714) 771-6900 Fax: (714) 538-1209 Enthalpy Analytical

Subcontracted Laboratory:

Project Manager: Turn Around Time:

Project Number: Project Name:

Need Transfer File (xls): Drinking Water: Sampler Employed by:

Chris Samatmanakit Normal unless noted in comments

SGVCOG Fire Effects Study San Gabriel Valley Council of Governn

Yes / No Yes) / No

Tracking Number:

Work Order: 3A15019

Sample ID: 3A15019-01/F_193B_R-2223_W1_01 Analysis

Expires

Comments

Chlorophyll-a - SM 10200H Sample comment:

01/16/2023 22:00

Matrix: Water Sampled By: Luis De La Torre Sampled: 01/14/2023 22:00

1040mL filtered on 1/15/23 at 15:34 by CSS. TestAmerica EDD needed.

Sample ID: 3A15019-02/F_194B_R-2223_W1_01

Containers Supplied: Plastic Bag (J)

Sample comment: Chlorophyll-a - SM 10200H

01/16/2023 22:15

948mL filtered on 1/15/23 at 15:53 by CSS. TestAmerica EDD needed. Matrix: Water Sampled By: Luis De La Torre Sampled: 01/14/2023 22:15

Containers Supplied: Plastic Bag (J)

Sample ID: 3A15019-03/ARCAD_WA_CON_2223_W1_01 Sample comment:

01/17/2023 01:30

1028mL filtered on 1/15/23 at 16:24 by CSS. Matrix: Water Sampled By: Luis De La Torre TestAmerica

Sampled: 01/15/2023 01:30

EDD needed.

Containers Supplied: Plastic Bag (J)

Chlorophyll-a - SM 10200H

Remarks / Special Comments:

Date /

/ Time

Received By

S

Evidence Seal Intact:

Container Attacked:

Yes Yes Yes

ö 8

8 8

Preserved at Lab:

Yes

Sample Condition

Temperature:

Preserved:

Date / Time

Date / Time 132%

Relingished By

Relingished By

Date / Time Received By

Page 1 of 1

Enthalpy Analytical 931 West Barkley Ave Orange, CA 92868 (714) 771-6900

enthalpy.com

Lab Job Number: 477704

Report Level: II

Report Date: 02/01/2023

Analytical Report *prepared for:*

Chris Samatmanakit Weck Laboratories 14859 Clark Ave. City of Industry, CA 91745

Location: 3A15019 SGVCOG Fire Effects Study

Authorized for release by:

duphgias Le

Quynhgiao Le, Project Manager

714-7716900

quynhgiao.le@enthalpy.com

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the above signature which applies to this PDF file as well as any associated electronic data deliverable files. The results contained in this report meet all requirements of NELAP and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

CA ELAP# 1338, NELAP# 4038, SCAQMD LAP# 18LA0518, LACSD ID# 10105

Sample Summary

Chris Samatmanakit Lab Job #: 477704

Weck Laboratories Location: 3A15019 SGVCOG Fire Effects Study

14859 Clark Ave. Date Received: 01/18/23

City of Industry, CA 91745

Sample ID	Lab ID	Collected	Matrix
3A15019-01/F_193B_R-2223_W1_01	477704-001	01/14/23 22:00	Water
3A15019-02/F_194B_R-2223_W1_01	477704-002	01/14/23 22:15	Water
3A15019-03/ARCAD_WA_CON_2223_W1_01	477704-003	01/15/23 01:30	Water

2.3/14.1

Subcontract Order

Subcontracted Laboratory:

Enthalpy Analytical 931 W. Barkley Ave Orange, CA 92868 Phone: (714) 771-6900 Fax: (714) 538-1209

477704

Turn Around Time:

Normal unless noted in comments

Project Manager:

Chris Samatmanakit

Project Name: Project Number: San Gabriel Valley Council of Governn

SGVCOG Fire Effects Study

Sampler Employed by:

Drinking Water:

Yes /(No) Need Transfer File (xls): (Yes) / No

Tracking Number:

Work Order: 3A15019

Sample ID: 3A15019-01/F_193B_R-2223_W1_01 Sample comment:

Chlorophyll-a - SM 10200H

01/16/2023 22:00

Expires

Sampled: 01/14/2023 22:00

Matrix: Water Sampled By: Luis De La Torre 1040mL filtered on 1/15/23 at 15:34 by CSS. TestAmerica

EDD needed.

Comments

Containers Supplied: Plastic Bag (J)

Sample ID: 3A15019-02/F_194B_R-2223_W1_01

Sample comment:

Chlorophyll-a - SM 10200H

01/16/2023 22:15

Sampled: 01/14/2023 22:15

Matrix: Water Sampled By: Luis De La Torre

948mL filtered on 1/15/23 at 15:53 by CSS. TestAmerica EDD needed.

Containers Supplied: Plastic Bag (J)

Sample ID: 3A15019-03/ARCAD_WA_CON_2223_W1_01

Sample comment:

Chlorophyll-a - SM 10200H

01/17/2023 01:30

Sampled: 01/15/2023 01:30

Matrix: Water Sampled By: Luis De La Torre

1028mL filtered on 1/15/23 at 16:24 by CSS. TestAmerica EDD needed.

Containers Supplied: Plastic Bag (J)

	Remarks / Special Comments:	┌ Sample Condition ──	
		Sample Colldition	
		Temperature:	
		Preserved:	Yes / No
		Evidence Seal Intact:	Yes / No
		Container Attacked:	Yes / No
	15/28	Preserved at Lab:	Yes / No
(16/3/8/3	22-11812	3 1378
	Relingished By Date / Time Received By		Date / Time

Relingished By

Date / Time Received By

Date / Time

Page 1 of 1

SAMPLE ACCEPTANCE CHECKLIST

Section 1			
Client: Weck Project: 3A15 of 9			
the land		По	
	Yes	1140	
Section 2			
Sample(s) received in a cooler? Yes, How many? No (skip section 2)	•	e Temp (°C) (No Cooler)	:
Sample Temp (°C), One from each cooler: #1: \4,\ #2: #3:		(110 000101)	
(Acceptance range is < 6° C but not frozen (for Microbiology samples, acceptance range is < 10° C but not frozen). It		for sample	- s collected
the same day as sample receipt to have a higher temperature as long as there is evidence that co	oling has beg	un.)	
Shipping Information:			
Section 3			
Was the cooler packed with: Vice Ice Packs Bubble Wrap Styro	foam		
Denote Dates			
Cooler Temp (°C): #1: 23 #2: #3:	#4:		
Section 4	YES	NO	N/A
Was a COC received?			
Are sample IDs present?	V		
Are sampling dates & times present?	V		
Is a relinquished signature present?	V		
Are the tests required clearly indicated on the COC?	V		
Are custody seals present?			
If custody seals are present, were they intact?			
Are all samples sealed in plastic bags? (Recommended for Microbiology samples)	V		
Did all samples arrive intact? If no, indicate in Section 4 below.	V		
Did all bottle labels agree with COC? (ID, dates and times)	V		
Were the samples collected in the correct containers for the required tests?	V		
Are the containers labeled with the correct preservatives?	ļ		i/
Is there headspace in the VOA vials greater than 5-6 mm in diameter?	ļ		V
Was a sufficient amount of sample submitted for the requested tests?	\ \		
Section 5 Explanations/Comments			
			l
		· · · · · · · · · · · · · · · · · · ·	
Section 6			
For discrepancies, how was the Project Manager notified? Verbal PM Initials:			
Email (email sent to/o	on):	/	
Project Manager's response:			
Completed By: Date: 1/19 23			

Enthalpy Analytical, a subsidiary of Montrose Environmental Group ,Inc. 931 W. Barkley (ve, Orange, CA 92868 • T: (714) 771-6900 • F: (714) 538-1209 www.enthalpy.com/socal

Sample Acceptance Checklist - Rev 4, 8/8/2017

Analysis Results for 477704

Chris Samatmanakit Weck Laboratories 14859 Clark Ave. City of Industry, CA 91745

Lab Job #: 477704 Location: 3A15019 SGVCOG Fire Effects Study

Date Received: 01/18/23

Sample ID: Lab ID: 477704-001 Collected: 01/14/23 22:00

3A15019-01/F_193B_R-2223_W1_01 Matrix: Water

Received filtered & frozen, Volume: 1040 mL

477704-001 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: SM 10200-H									
Chlorophyll a	ND		mg/M3	1.0	1	306171	01/14/23 22:00	01/25/23 19:03	ATP

Sample ID: Lab ID: 477704-002 Collected: 01/14/23 22:15

Matrix: Water 3A15019-02/F_194B_R-2223_W1_01

Received filtered & frozen. Volume: 948 mL

477704-002 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: SM 10200-H									
Chlorophyll a	ND		mg/M3	1.0	1	306171	01/14/23 22:15	01/25/23 19:03	ATP

Sample ID: Lab ID: 477704-003 Collected: 01/15/23 01:30

3A15019-03/ARCAD_WA_CON_2223_W1_01 Matrix: Water

Received filtered & frozen. Volume: 1028 mL

477704-003 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: SM 10200-H									
Chlorophyll a	ND		mg/M3	1.0	1	306171	01/15/23 01:30	01/25/23 19:03	ATP

ND Not Detected

FINAL REPORT

Work Orders: 3B26002 Report Date: 4/21/2023

Received Date: 2/26/2023

Turnaround Time: Normal

Phones: (858) 514-7729

Fax: (858) 278-5300

P.O. #: C015102726

Billing Code:

Attn: Brenda Stevens

Project: SGVCOG Fire Effects Study

Client: WSP USA E&I Inc. - San Diego

9177 Sky Park Court, Ste A San Diego, CA 92123

Dod-ELAP ANAB #ADE-2882 • Dod-ISO ANAB # • ELAP-CA #1132 • EPA-UCMR #CA00211 • ISO17025 ANAB #L2457.01 • LACSD #10143

This is a complete final report. The information in this report applies to the samples analyzed in accordance with the chain-of-custody document. Weck Laboratories certifies that the test results meet all requirements of TNI unless noted by qualifiers or written in the Case Narrative. This analytical report must be reproduced in its entirety.

Dear Brenda Stevens,

Enclosed are the results of analyses for samples received 2/26/23 with the Chain-of-Custody document. The samples were received in good condition, at 1.3 °C and on ice. All analyses met the method criteria except as noted in the case narrative or in the report with data qualifiers.

Reviewed by:

Chris Samatmanakit Project Manager

1: State

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Reported: 04/21/2023 17:40

Project Manager: Brenda Stevens

Sample Summary

Sample Name	Sampled By	Lab ID	Matrix	Sampled	Qualifiers
F_193B_R-2223_W2_01	Luis De La Torre	3B26002-01	Water	02/25/23 16:55	
F_194B_R-2223_W2_01	Luis De La Torre	3B26002-02	Water	02/25/23 17:20	
ARCAD_WA_CON_2223_W2_01	Luis De La Torre	3B26002-03	Water	02/25/23 17:50	
F-193B-R_2223_W2_01	Luis De La Torre	3B26002-04	Water	02/25/23 00:40	
F-194B-R_2223_W2_01	Luis De La Torre	3B26002-05	Water	02/25/23 01:05	
ARCAD_WA_CON_2223_W2_01	Luis De La Torre	3B26002-06	Water	02/25/23 01:45	
F-194B-R_2223_W2_03	Luis De La Torre	3B26002-07	Water	02/25/23 01:05	
F-193B-R_2223_W2_01	Luis De La Torre	3B26002-08	Water	02/25/23 00:40	
F-194B-R_2223_W2_01	Luis De La Torre	3B26002-09	Water	02/25/23 01:05	
ARCAD_WA_CON_2223_W2_01	Luis De La Torre	3B26002-10	Water	02/25/23 01:45	
F-194B-R_2223_W2_03	Luis De La Torre	3B26002-11	Water	02/25/23 01:05	

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123

Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

04/21/2023 17:40

Sample Results

ample:	F_193B_R-2223_W2_01						Sampled: 0	2/25/23 16:55 by L	uis De La Tor
	3B26002-01 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifi
ventional	Chemistry/Physical Parameters	by APHA/EPA/ASTM Methods							
ethod: Cal	culation				Instr: [CALC]				
Batch ID: [CALC]	Preparation: [CALC]			Prepared: 03/1	11/23 07:33			Analyst: YM
Nitrogen,	Total		2.4	0.036	0.20	mg/l	1	03/14/23	
ethod: EPA	350.1				Instr: AA06				
Batch ID: \	W3C1058	Preparation: _NONE (WETCHEM)			Prepared: 03/1	12/23 11:44			Analyst: HE
Ammonia	as N		0.071	0.017	0.10	mg/l	1	03/13/23	
ethod: EPA	351.2				Instr: AA06				
Batch ID: \	W3C1036	Preparation: _NONE (WETCHEM)			Prepared: 03/1	11/23 07:33			Analyst: YN
TKN			1.2	0.13	0.20	mg/l	1	03/14/23	M-
ethod: EPA	x 353.2				Instr: AA01				
Batch ID: \	W3B2201	Preparation: _NONE (WETCHEM)			Prepared: 02/2	27/23 11:45			Analyst: IS
Nitrate as	N		- 1.1	0.040	0.20	mg/l	1	02/27/23 14:34	
Nitrite as I	N		- 87	42	100	ug/l	1	02/27/23 14:34	
NO2+NO3	as N		1200	36	200	ug/l	1	02/27/23	
avalent Ch	romium by IC								
ethod: EPA	x 218.6				Instr: LC13				
Batch ID: \	W3C0346	Preparation: _NONE (LC)			Prepared: 03/0	06/23 00:00			Analyst: e
Chromium	1 6+		0.35	0.0079	0.020	ug/l	1	03/06/23	
Chromium	1 6+, Dissolved		0.40	0.0079	0.020	ug/l	1	03/06/23	
als by EPA	200 Series Methods								
ethod: EPA					Instr: ICP03				
Batch ID: \		Preparation: EPA 200.2			Prepared: 03/0	02/23 10:49			Analyst: k
Phosphor	us, Dissolved	•	0.064	0.018	0.050	mg/l	1	03/10/23	•
Phosphor	us, Total		0.33	0.036	0.10	mg/l	1	03/10/23	M
ethod: EPA	200.8				Instr: ICPMS06				
Batch ID: \		Preparation: EPA 200.2			Prepared: 03/0				Analyst:
Aluminum	, Dissolved		110	8.9	40	ug/l	1	03/03/23	M
Aluminum	, Total		8500	8.9	40	ug/l	1	03/07/23	M-
Antimony,	Dissolved		0.97	0.18	1.0	ug/l	1	03/03/23	M-02
Antimony,	Total		- 1.7	0.18	1.0	ug/l	1	03/03/23	M
Arsenic, D	Dissolved		1.4	0.15	0.80	ug/l	1	03/03/23	М
Arsenic, T	otal		3.4	0.15	0.80	ug/l	1	03/03/23	M
Beryllium,	Dissolved		ND	0.12	0.20	ug/l	1	03/03/23	M
Beryllium,	Total		0.43	0.057	0.20	ug/l	1	03/03/23	M
•				0.083	0.40	ug/l	1	03/03/23	M
Cadmium,			0.11	0.084	0.40	ug/l	1	03/03/23	M-02
			0.73	0.18	0.40	ug/l	1	03/03/23	M-02
on onnull	i, Dissolveu		0.73	0.10	0.40	ug/i	'	00/00/20	IVI-

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123

Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

(Continued)

04/21/2023 17:40

Sample Results

Sample:	F_193B_R-2223_W2_01					Sampled: 02	/25/23 16:55 by	
	3B26002-01 (Water)							(Continued
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
-	A 200 Series Methods (Continue	d)						
Method: EPA				Instr: ICPMS06				
Batch ID: \ Copper, D		Preparation: EPA 200.2	0.45	Prepared: 03/0	02/23 13:29 ug/l	1	03/03/23	Analyst: jo M-0
Copper, T			0.46	1.0	ug/l	1	03/03/23	M-0
Iron, Diss	ota:		7.9	40		1	03/03/23	M-0
			7.9 7.9	40	ug/l	1	03/03/23	M-0
Iron, Total					ug/l	1		
Lead, Dis		0.30	0.17	0.40	ug/l		03/03/23	M-02,
Lead, Tota			0.17	0.40	ug/l	1	03/03/23	M-0
Nickel, Di		0.51	0.33	4.0	ug/l	1	03/03/23	M-02,
Nickel, To		8.5	0.81	4.0	ug/l	1	03/03/23	M-0
Selenium,	, Dissolved	0.18	0.13	0.80	ug/l	1	03/03/23	M-02,
Selenium,	, Total	0.17	0.13	0.80	ug/l	1	03/03/23	M-02,
Silver, Dis	ssolved	ND	0.060	0.40	ug/l	1	03/03/23	M-0
Silver, Tota	al	ND	0.11	0.40	ug/l	1	03/03/23	M-0
Thallium, l	Dissolved	· · · · · · · · · · · · · · · ·	0.042	0.40	ug/l	1	03/03/23	M-0
Thallium,	Total	0.052	0.042	0.40	ug/l	1	03/03/23	M-02,
Zinc, Diss	olved	ND	1.6	20	ug/l	1	03/03/23	M-C
Zinc, Tota	al	56	3.3	20	ug/l	1	03/03/23	M-0
Method: EPA	A 245.1			Instr: HG03				
Batch ID:	W3C0293	Preparation: EPA 245.1		Prepared: 03/	03/23 08:25			Analyst: KVM
Mercury, I	Dissolved	0.038	0.037	0.050	ug/l	1	03/06/23	
Mercury,	Total	0.098	0.037	0.050	ug/l	1	03/06/23	
mivolatile (Organics - Low Level by Tandem	GC/MS/MS						
Method: EPA	A 625.1			Instr: GCMS15	;			
Batch ID:	W3C0154	Preparation: EPA 3535/SPE		Prepared: 03/	02/23 09:05			Analyst: EFG
Acenaphth	hene	ND	6.0	25	ng/l	1	03/14/23	M-0
Acenaphth	hylene		5.0	25	ng/l	1	03/14/23	M-0
Anthracen	ne	ND	5.5	25	ng/l	1	03/14/23	M-0
Benzo (a)	anthracene	ND	4.6	25	ng/l	1	03/14/23	M-0
Benzo (a)	pyrene	ND	4.8	25	ng/l	1	03/14/23	M-0
Benzo (b)	fluoranthene	ND	8.0	25	ng/l	1	03/14/23	M-0
Benzo (g,l	h,i) perylene	ND	5.0	25	ng/l	1	03/14/23	M-0
Benzo (k)	fluoranthene	ND	6.0	25	ng/l	1	03/14/23	M-0
Chrysene		ND	7.0	25	ng/l	1	03/14/23	M-0
•		ND	6.0	25	ng/l	1	03/14/23	M-C
Fluoranthe	,	ND	7.5	25	ng/l	1	03/14/23	M-C
Fluorene		ND	5.5	25	ng/l	1	03/14/23	M-0
	0.01\	ND	4.8	25	ng/l	1	03/14/23	M-0
Indeno (1,	.2.3-cg) pyrene							

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Reported:

04/21/2023 17:40

Sample Results

(Continued)

Sample:	F_193B_R-2223_W2_01				S	ampled: 02	/25/23 16:55 by	Luis De La Torre
	3B26002-01 (Water)							(Continued)
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
Semivolatile Org	ganics - Low Level by Tandem Go	C/MS/MS (Continued)						
Method: EPA 6	25.1			Instr: GCMS15				
Batch ID: W3	3C0154	Preparation: EPA 3535/SPE		Prepared: 03/0	2/23 09:05			Analyst: EFC
Naphthalene	•	18	16	25	ng/l	1	03/14/23	M-02, J
Phenanthrer	ne	ND	15	25	ng/l	1	03/14/23	M-02
Pyrene		ND	7.0	25	ng/l	1	03/14/23	M-02
Surrogate(s)								
1,3-Dimethy	l-2-nitrobenzene	67%	Conc: 335	62-120			03/14/23	
Perylene-d1	2	34%	Conc: 172	36-120			03/14/23	S-GC

Project Manager: Brenda Stevens

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

04/21/2023 17:40

Sample Results

Sample: F_194B_R-2223_W2_0)1					Sampled: 0)2/25/23 17:20 by L	uis De La Tor
3B26002-02 (Water)	, ,					Sampica. c	,2,23,23 11.20 by 2	ais De La Toi
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifi
	neters by APHA/EPA/ASTM Methods						. •	
Method: Calculation				Instr: [CALC]				
Batch ID: [CALC]	Preparation: [CALC]			Prepared: 03/	11/23 07:33			Analyst: YM
Nitrogen, Total		1.8	0.036	0.10	mg/l	1	03/14/23	_
Method: EPA 350.1				Instr: AA06				
Batch ID: W3C1058	Preparation: _NONE (WETCHE	M)		Prepared: 03/	12/23 11:44			Analyst: HE
Ammonia as N		- 0.13	0.017	0.10	mg/l	1	03/13/23	
Method: EPA 351.2				Instr: AA06				
Batch ID: W3C1036	Preparation: _NONE (WETCHE	M)		Prepared: 03/	11/23 07:33			Analyst: YN
TKN		0.88	0.065	0.10	mg/l	1	03/14/23	
Method: EPA 353.2				Instr: AA01				
Batch ID: W3B2201	Preparation: _NONE (WETCHE	M)		Prepared: 02/2	27/23 11:45			Analyst: IS
Nitrate as N		0.80	0.040	0.20	mg/l	1	02/27/23 14:35	
Nitrite as N		130	42	100	ug/l	1	02/27/23 14:35	
NO2+NO3 as N		930	36	200	ug/l	1	02/27/23	
exavalent Chromium by IC								
Method: EPA 218.6				Instr: LC13				
Batch ID: W3C0346	Preparation: _NONE (LC)			Prepared: 03/0	06/23 00:00			Analyst: e
Chromium 6+		0.49	0.0079	0.020	ug/l	1	03/06/23	
Chromium 6+, Dissolved		0.49	0.0079	0.020	ug/l	1	03/06/23	
etals by EPA 200 Series Methods								
Method: EPA 200.7				Instr: ICP03				
Batch ID: W3C0190	Preparation: EPA 200.2			Prepared: 03/0	02/23 10:49			Analyst: k
Phosphorus, Dissolved		0.058	0.018	0.050	mg/l	1	03/10/23	
Phosphorus, Total		- 0.31	0.036	0.10	mg/l	1	03/10/23	M
Method: EPA 200.8				Instr: ICPMS06	5			
Batch ID: W3C0194	Preparation: EPA 200.2			Prepared: 03/0	02/23 13:29			Analyst:
Aluminum, Dissolved		87	8.9	40	ug/l	1	03/03/23	M
Aluminum, Total		8700	8.9	40	ug/l	1	03/07/23	M
Antimony, Dissolved		- 0.90	0.18	1.0	ug/l	1	03/03/23	M-02
Antimony, Total		1.2	0.18	1.0	ug/l	1	03/03/23	M
Arsenic, Dissolved		1.8	0.15	0.80	ug/l	1	03/03/23	M
Arsenic, Total		4.2	0.15	0.80	ug/l	1	03/03/23	M-
Beryllium, Dissolved		ND	0.12	0.20	ug/l	1	03/03/23	M-
Beryllium, Total		0.34	0.057	0.20	ug/l	1	03/03/23	M-
•		ND	0.083	0.40	ug/l	1	03/03/23	M-
		- 0.12	0.084	0.40	ug/l	1	03/03/23	J, M-
					ug/l	1	03/03/23	M
,		0.92	0.18	0.40				
•			0.18 0.18	0.40	ug/l	1	03/03/23	M-

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123

Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

(Continued)

Page 7 of 28

04/21/2023 17:40

3B26002

Sample Results

Sample: F_194B_R-2223_W2	01			S	ampled: 02	2/25/23 17:20 by	
3B26002-02 (Water)						(Continued
Analyte	Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
letals by EPA 200 Series Methods (Continued)						
Method: EPA 200.8			Instr: ICPMS06	j			
Batch ID: W3C0194	Preparation: EPA 200.2	0.45	Prepared: 03/0			00/00/00	Analyst: jo
ооррон, 2.000.1102	4.4	0.45	1.0	ug/l	1	03/03/23	M-0
	21	0.46	1.0	ug/l	1	03/03/23	M-0:
, 2.000.000	100	7.9	40	ug/l	1	03/03/23	M-0
,	12000	7.9	40	ug/l	1	03/03/23	M-0
Lead, Dissolved	0.35	0.17	0.40	ug/l	1	03/03/23	M-02,
Lead, Total	 20	0.17	0.40	ug/l	1	03/03/23	M-0
Nickel, Dissolved	0.39	0.33	4.0	ug/l	1	03/03/23	M-02,
Nickel, Total	8.5	0.81	4.0	ug/l	1	03/03/23	M-0
Selenium, Dissolved	0.20	0.13	0.80	ug/l	1	03/03/23	M-02,
Selenium, Total	0.20	0.13	0.80	ug/l	1	03/03/23	J, M-0
Silver, Dissolved	ND	0.060	0.40	ug/l	1	03/03/23	M-0
Silver, Total	ND	0.11	0.40	ug/l	1	03/03/23	M-C
Thallium, Dissolved	ND	0.042	0.40	ug/l	1	03/03/23	M-0
Thallium, Total	0.060	0.042	0.40	ug/l	1	03/03/23	M-02,
Zinc, Dissolved	2.5	1.6	20	ug/l	1	03/03/23	M-02,
Zinc, Total		3.3	20	ug/l	1	03/03/23	M-C
Method: EPA 245.1			Instr: HG03				
Batch ID: W3C0293	Preparation: EPA 245.1		Prepared: 03/0)3/23 08·25			Analyst: KVN
	ND	0.037	0.050	ug/l	1	03/06/23	7
Mercury, Total	0.075	0.037	0.050	ug/l	1	03/06/23	
mivolatile Organics - Low Level by	Tandem GC/MS/MS						
Method: EPA 625.1			Instr: GCMS15				
Batch ID: W3C0154	Preparation: EPA 3535/SPE		Prepared: 03/0	02/23 09:05			Analyst: EF
Acenaphthene	ND	6.0	25	ng/l	1	03/14/23	M-0
7 toonapharono					1	03/14/23	M-0
•	ND	5.0	25	ng/l	'	00/11/20	
Acenaphthylene		5.0 5.5	25 25	ng/l	1	03/14/23	M-C
Acenaphthylene Anthracene				-			
Acenaphthylene Anthracene Benzo (a) anthracene	ND	5.5	25	ng/l	1	03/14/23	M-0
Acenaphthylene Anthracene Benzo (a) anthracene Benzo (a) pyrene		5.5 4.6	25 25	ng/l	1 1	03/14/23 03/14/23	M-0
Acenaphthylene Anthracene Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene	ND ND ND	5.5 4.6 4.8	25 25 25	ng/l ng/l ng/l	1 1 1	03/14/23 03/14/23 03/14/23	M-0 M-0 M-0
Acenaphthylene Anthracene Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (g,h,i) perylene	ND ND ND ND ND	5.5 4.6 4.8 8.0	25 25 25 25	ng/l ng/l ng/l ng/l	1 1 1 1	03/14/23 03/14/23 03/14/23 03/14/23	M-C M-C M-C
Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene	ND ND ND ND ND	5.5 4.6 4.8 8.0 5.0	25 25 25 25 25 25	ng/l ng/l ng/l ng/l ng/l	1 1 1 1	03/14/23 03/14/23 03/14/23 03/14/23 03/14/23	M-C M-C
Acenaphthylene Anthracene Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene	ND ND ND ND ND ND ND	5.5 4.6 4.8 8.0 5.0 6.0 7.0	25 25 25 25 25 25 25 25	ng/l ng/l ng/l ng/l ng/l ng/l ng/l	1 1 1 1 1	03/14/23 03/14/23 03/14/23 03/14/23 03/14/23 03/14/23	M-C M-C M-C M-C
Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene Dibenzo (a,h) anthracene	ND	5.5 4.6 4.8 8.0 5.0 6.0 7.0 6.0	25 25 25 25 25 25 25 25 25 25	ng/l ng/l ng/l ng/l ng/l ng/l ng/l ng/l	1 1 1 1 1 1	03/14/23 03/14/23 03/14/23 03/14/23 03/14/23 03/14/23 03/14/23	M-0 M-0 M-0 M-0 M-0 M-0
Acenaphthylene Anthracene Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene Dibenzo (a,h) anthracene Fluoranthene	ND	5.5 4.6 4.8 8.0 5.0 6.0 7.0	25 25 25 25 25 25 25 25	ng/l ng/l ng/l ng/l ng/l ng/l ng/l	1 1 1 1 1 1	03/14/23 03/14/23 03/14/23 03/14/23 03/14/23 03/14/23	M-0 M-0 M-0 M-0 M-0

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Reported:

04/21/2023 17:40

Sample Results

(Continued)

Sample:	F_194B_R-2223_W2_01				S	ampled: 02	/25/23 17:20 by	Luis De La Torre
	3B26002-02 (Water)							(Continued)
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
Semivolatile O	Organics - Low Level by Tandem GC	/MS/MS (Continued)						
Method: EPA	x 625.1			Instr: GCMS15				
Batch ID: V	W3C0154	Preparation: EPA 3535/SPE		Prepared: 03/0	2/23 09:05			Analyst: EFC
Naphthale	ne	31	16	25	ng/l	1	03/14/23	M-02
Phenanthr	ene	ND	15	25	ng/l	1	03/14/23	M-02
Pyrene		ND	7.0	25	ng/l	1	03/14/23	M-02
Surrogate(s)								
1,3-Dimeth	hyl-2-nitrobenzene	71%	Conc: 353	62-120			03/14/23	
Perylene-c	d12	33%	Conc: 164	36-120			03/14/23	S-GC

Project Manager: Brenda Stevens

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

04/21/2023 17:40

Sample Results

Sample: ARCA	D_WA_CON_2223_W2_01						Sampled: 0)2/25/23 17:50 by L	uis De La Torr
3B260	002-03 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifi
nventional Chemistr	y/Physical Parameters by A	APHA/EPA/ASTM Methods							
Method: Calculation					Instr: [CALC]				
Batch ID: [CALC]		Preparation: [CALC]			Prepared: 03/				Analyst: YM
Nitrogen, Total			1.1	0.036	0.10	mg/l	1	03/14/23	
Method: EPA 350.1					Instr: AA06				
Batch ID: W3C1058		Preparation: _NONE (WETC	CHEM)		Prepared: 03/	12/23 11:44			Analyst: HEG
Ammonia as N			0.074	0.017	0.10	mg/l	1	03/13/23	
Method: EPA 351.2					Instr: AA06				
Batch ID: W3C1036		Preparation: _NONE (WETC	CHEM)		Prepared: 03/	11/23 07:33			Analyst: YM
TKN			0.42	0.065	0.10	mg/l	1	03/14/23	
Method: EPA 353.2					Instr: AA01				
Batch ID: W3B2201		Preparation: _NONE (WETC	CHEM)		Prepared: 02/2	27/23 11:45			Analyst: ISN
Nitrate as N			0.65	0.040	0.20	mg/l	1	02/27/23 14:23	
Nitrite as N			ND	42	100	ug/l	1	02/27/23 14:23	
NO2+NO3 as N				36	200	ug/l	1	02/27/23	
exavalent Chromium	by IC								
Method: EPA 218.6	•				Instr: LC13				
Batch ID: W3C0346		Preparation: _NONE (LC)			Prepared: 03/	06/23 00:00			Analyst: ejr
Chromium 6+			0.37	0.0079	0.020	ug/l	1	03/06/23	• •
Chromium 6+, Diss	solved		0.44	0.0079	0.020	ug/l	1	03/06/23	
etals by EPA 200 Seri	es Methods								
Method: EPA 200.7					Instr: ICP03				
Batch ID: W3C0190		Preparation: EPA 200.2			Prepared: 03/	02/23 10:49			Analyst: kvr
Phosphorus, Disse	olved		0.032	0.018	0.050	mg/l	1	03/10/23	•
Phosphorus, Total			0.085	0.018	0.050	mg/l	1	03/10/23	
Method: EPA 200.8					Instr: ICPMS06	5			
Batch ID: W3C0194		Preparation: EPA 200.2			Prepared: 03/				Analyst: jo
Aluminum, Dissolv	/ed		36	4.4	20	ug/l	1	03/03/23	, ,
Aluminum, Total			1100	4.4	20	ug/l	1	03/07/23	
Antimony, Dissolv	ed		0.47	0.089	0.50	ug/l	1	03/03/23	
Antimony, Total			0.70	0.089	0.50	ug/l	1	03/03/23	
Arsenic, Dissolved	l		1.7	0.074	0.40	ug/l	1	03/03/23	
Arsenic, Total				0.074	0.40	ug/l	1	03/03/23	
Beryllium, Dissolve				0.062	0.10	ug/l	1	03/03/23	
Beryllium, Total				0.029	0.10	ug/l	1	03/03/23	
Cadmium, Dissolve			0.0-12	0.029	0.10	ug/l	1	03/03/23	
						_	1		
Cadmium, Total			0.0.0	0.042	0.20	ug/l		03/03/23	
Chuandian Biri			0.36	0.089	0.20	ug/l	1	03/03/23	
Chromium, Dissol				0.089	0.20	ug/l	1	03/03/23	

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Reported:

04/21/2023 17:40

Sample Results

Project Manager: Brenda Stevens

Sample:	ARCAD_WA_CON_2223_W2	2_01				Sampled: 02	2/25/23 17:50 by	Luis De La Torr
	3B26002-03 (Water)							(Continued
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualific
etals by EPA	200 Series Methods (Continue	ed)						
Method: EPA	A 200.8			Instr: ICPMS06	5			
Batch ID: V		Preparation: EPA 200.2		Prepared: 03/0				Analyst: jo
Copper, D		2.1	0.23	0.50	ug/l	1	03/03/23	
Copper, To		5.4	0.23	0.50	ug/l	1	03/03/23	
Iron, Disso			3.9	20	ug/l	1	03/03/23	
Iron, Total		1100	3.9	20	ug/l	1	03/03/23	
Lead, Diss		0.11	0.083	0.20	ug/l	1	03/03/23	
Lead, Tota	al	3.6	0.083	0.20	ug/l	1	03/03/23	
Nickel, Dis	ssolved	0.21	0.16	2.0	ug/l	1	03/03/23	
Nickel, Tot	tal	1.2	0.40	2.0	ug/l	1	03/03/23	
Selenium,	Dissolved	0.12	0.067	0.40	ug/l	1	03/03/23	
Selenium,	Total	0.15	0.067	0.40	ug/l	1	03/03/23	
Silver, Diss	solved	ND	0.030	0.20	ug/l	1	03/03/23	
Silver, Tota	al	ND	0.055	0.20	ug/l	1	03/03/23	
Thallium, [Dissolved	ND	0.021	0.20	ug/l	1	03/03/23	
Thallium, T	Total	ND	0.021	0.20	ug/l	1	03/03/23	
Zinc, Diss			0.80	10	ug/l	1	03/03/23	
Zinc, Total	l		1.7	10	ug/l	1	03/03/23	
Method: EPA	A 245.1			Instr: HG03				
Batch ID: V	W3C0293	Preparation: EPA 245.1		Prepared: 03/0	03/23 08:25			Analyst: KV
Mercury, D	Dissolved	0.053	0.037	0.050	ug/l	1	03/06/23	•
Mercury, T	Total	0.042	0.037	0.050	ug/l	1	03/06/23	
nivolatila C	Organics - Low Level by Tandem	GC/MS/MS						
invoidule C								
	A 625.1			Instr: GCMS15				
		Preparation: EPA 3535/SPE		Instr: GCMS15 Prepared: 03/0				Analyst: E
Method: EPA	W3C0154	Preparation: EPA 3535/SPE ND	1.2			1	03/14/23	Analyst: E
Method: EPA Batch ID: V	W3C0154 nene	•	1.2 1.0	Prepared: 03/0	02/23 09:05	1 1	03/14/23 03/14/23	Analyst: El
Method: EPA Batch ID: V Acenaphth	W3C0154 nene			Prepared: 03/0	02/23 09:05 ng/l			Analyst: Ef
Method: EPA Batch ID: V Acenaphth Acenaphth Anthracen	W3C0154 nene nylene	ND ND	1.0	Prepared: 03/0 5.0 5.0	02/23 09:05 ng/l ng/l	1	03/14/23	Analyst: El
Method: EPA Batch ID: V Acenaphth Acenaphth Anthracen	W3C0154 nene nylene e anthracene		1.0 1.1	Prepared: 03/0 5.0 5.0 5.0	02/23 09:05 ng/l ng/l ng/l	1	03/14/23 03/14/23	Analyst: Ef
Method: EPA Batch ID: V Acenaphth Acenaphth Anthracene Benzo (a) Benzo (a)	W3C0154 nene nylene e anthracene pyrene	. ND ND ND ND	1.0 1.1 0.92	97 Prepared: 03/0 5.0 5.0 5.0 5.0	02/23 09:05 ng/l ng/l ng/l ng/l	1 1 1	03/14/23 03/14/23 03/14/23	Analyst: Ef
Method: EPA Batch ID: V Acenaphth Acenaphth Anthracene Benzo (a) Benzo (b)	W3C0154 nene nylene e anthracene pyrene fluoranthene	. ND . ND . ND	1.0 1.1 0.92 0.97	Frepared: 03/0 5.0 5.0 5.0 5.0 5.0	ng/l ng/l ng/l ng/l ng/l	1 1 1	03/14/23 03/14/23 03/14/23 03/14/23	Analyst: Ef
Method: EPA Batch ID: V Acenaphth Acenaphth Anthracene Benzo (a) Benzo (b) Benzo (g,f	W3C0154 nene nylene e anthracene pyrene fluoranthene h,i) perylene	. ND ND ND ND ND ND ND ND ND	1.0 1.1 0.92 0.97 1.6	Frepared: 03/0 5.0 5.0 5.0 5.0 5.0 5.0	ng/l ng/l ng/l ng/l ng/l ng/l	1 1 1 1	03/14/23 03/14/23 03/14/23 03/14/23	Analyst: Ef
Method: EPA Batch ID: V Acenaphth Acenaphth Anthracene Benzo (a) Benzo (b) Benzo (g,t Benzo (k)	W3C0154 nene nylene e anthracene pyrene fluoranthene fluoranthene fluoranthene	ND N	1.0 1.1 0.92 0.97 1.6 1.0	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	ng/l ng/l ng/l ng/l ng/l ng/l ng/l	1 1 1 1 1	03/14/23 03/14/23 03/14/23 03/14/23 03/14/23	Analyst: EF
Method: EPA Batch ID: V Acenaphth Acenaphth Anthracene Benzo (a): Benzo (b): Benzo (g,I Benzo (k): Chrysene	W3C0154 nene nylene e anthracene pyrene fluoranthene h,i) perylene fluoranthene	ND N	1.0 1.1 0.92 0.97 1.6 1.0 1.2	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	ng/l ng/l ng/l ng/l ng/l ng/l ng/l ng/l	1 1 1 1 1 1	03/14/23 03/14/23 03/14/23 03/14/23 03/14/23 03/14/23 03/14/23	Analyst: EF
Method: EPA Batch ID: V Acenaphth Acenaphth Anthracene Benzo (a) Benzo (b) Benzo (g,t Benzo (k) Chrysene Dibenzo (a)	W3C0154 nene nylene e anthracene pyrene fluoranthene fluoranthene fluoranthene a,h) anthracene	. ND	1.0 1.1 0.92 0.97 1.6 1.0 1.2 1.4	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	ng/l ng/l ng/l ng/l ng/l ng/l ng/l ng/l	1 1 1 1 1 1 1	03/14/23 03/14/23 03/14/23 03/14/23 03/14/23 03/14/23 03/14/23 03/14/23	Analyst: EF
Method: EPA Batch ID: V Acenaphth Acenaphth Anthracene Benzo (a): Benzo (b): Benzo (g,t Benzo (k): Chrysene Dibenzo (a)	W3C0154 nene nylene e anthracene pyrene fluoranthene fluoranthene fluoranthene a,h) anthracene ene	ND 1.1 ND	1.0 1.1 0.92 0.97 1.6 1.0 1.2 1.4 1.2	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	ng/l ng/l ng/l ng/l ng/l ng/l ng/l ng/l	1 1 1 1 1 1 1 1	03/14/23 03/14/23 03/14/23 03/14/23 03/14/23 03/14/23 03/14/23 03/14/23 03/14/23	Analyst: Ef
Method: EPA Batch ID: V Acenaphth Acenaphth Anthracene Benzo (a) Benzo (b) Benzo (g,F Benzo (k) Chrysene Dibenzo (a) Fluoranthe	W3C0154 nene nylene e anthracene pyrene fluoranthene fluoranthene fluoranthene a,h) anthracene ene	. ND	1.0 1.1 0.92 0.97 1.6 1.0 1.2 1.4	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	ng/l ng/l ng/l ng/l ng/l ng/l ng/l ng/l	1 1 1 1 1 1 1 1	03/14/23 03/14/23 03/14/23 03/14/23 03/14/23 03/14/23 03/14/23 03/14/23	Analyst: EF

03/01/23

mg/l

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123

Total Suspended Solids

Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

04/21/2023 17:40

		_
		C
V.		
		_

Sample Results

Sa	ample Results							(Continued
Sample:	ARCAD_WA_CON_2223_W2	_01				Sampled: 02	2/25/23 17:50 by	y Luis De La Tori
	3B26002-03 (Water)							(Continue
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifi
mivolatile (Organics - Low Level by Tandem	GC/MS/MS (Continued)						
Method: EP	A 625.1			Instr: GCMS15				
Batch ID:	W3C0154	Preparation: EPA 3535/SPE		Prepared: 03/0	2/23 09:05			Analyst: El
Naphthale	ene	5.3	3.2	5.0	ng/l	1	03/14/23	
Phenanth	rene	4.6	3.0	5.0	ng/l	1	03/14/23	
Pyrene		2.6	1.4	5.0	ng/l	1	03/14/23	
Surrogate(s)	thyl-2-nitrobenzene	58%	Conc: 57.6	62-120			03/14/23	S-
							03/14/23	0-
Perylene-		47%	Conc: 47.3	36-120			03/14/23	(Combinue
Sa	ample Results							(Continue
Sample:	F-193B-R_2223_W2_01					Sampled: 02	2/25/23 0:40 by	y Luis De La To
	3B26002-04 (Water)							
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualif
nventional	Chemistry/Physical Parameters	by APHA/EPA/ASTM Methods						
Method: SM	1 2540C			Instr: OVEN17				
Batch ID:	W3B2303	Preparation: _NONE (WETCHEM)		Prepared: 02/2	8/23 12:35			Analyst: b
Total Diss	solved Solids		4.0	10	mg/l	1	02/28/23	
Method: SM	1 2540D			Instr: OVEN15				
Batch ID:	W3C0076	Preparation: _NONE (WETCHEM)		Prepared: 03/0	1/23 12:15			Analyst: m
Total Sus	pended Solids	690		5	mg/l	1	03/01/23	
Sa	ample Results							(Continue
Sample:	F-194B-R_2223_W2_01					Sampled: 02	2/25/23 1:05 by	y Luis De La To
	3B26002-05 (Water)							
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualif
nventional	Chemistry/Physical Parameters	by APHA/EPA/ASTM Methods						
Method: SM	1 2540C			Instr: OVEN17				
Batch ID:	W3B2303	Preparation: _NONE (WETCHEM)		Prepared: 02/2				Analyst: b
Total Diss	solved Solids	77	4.0	10	mg/l	1	02/28/23	
Method: SM	1 2540D			Instr: OVEN15				
Batch ID:	W3C0076	Preparation: _NONE (WETCHEM)		Prepared: 03/0	1/23 12:15			Analyst: m
T		500		_			00/04/00	

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123

Metals by EPA 200 Series Methods

Hardness as CaCO3, Total

Method: Calculation **Batch ID:** [CALC]

Method: EPA 200.7

Calcium, Total

Batch ID: W3C0190

Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

04/21/2023 17:40

	Λ	4
- VI		
- 4		

Sample Results

(Continued)

Analyst: kvm

Analyst: kvm

M-02

03/10/23

03/10/23

Sample:									
Jampie.	ARCAD_WA_CON_2223_W2	_01					Sampled: 0	2/25/23 1:45 by	/ Luis De La Torr
	3B26002-06 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifi
onventional	Chemistry/Physical Parameters	by APHA/EPA/ASTM Methods							
Method: SM	1 2540C				Instr: OVEN17				
Batch ID:	W3B2303	Preparation: _NONE (WETCHE	M)		Prepared: 02/2	28/23 12:35			Analyst: be
Total Diss	solved Solids		- 140	4.0	10	mg/l	1	02/28/23	
Method: SM	1 2540D				Instr: OVEN15				
Batch ID:	W3C0076	Preparation: _NONE (WETCHE	M)		Prepared: 03/0	01/23 12:15			Analyst: me
Total Sus	pended Solids		16		5	mg/l	1	03/01/23	
Sa	ample Results								(Continued
Cample	F-194B-R_2223_W2_03						Sampled: 0	2/25/23 1:05 by	/ Luis De La Tor
Sample:	1 13 10 1(_LLL3_11L_03						1	_,,,	'
sample.	3B26002-07 (Water)							_,,	
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	
Analyte		oy APHA/EPA/ASTM Methods	Result	MDL	MRL	Units	·		
Analyte	3B26002-07 (Water) Chemistry/Physical Parameters I	oy APHA/EPA/ASTM Methods	Result	MDL	MRL Instr: OVEN17	Units	·		
Analyte Conventional	3B26002-07 (Water) Chemistry/Physical Parameters I	oy APHA/EPA/ASTM Methods Preparation: _NONE (WETCHE)		MDL			·		Qualifi
Analyte Conventional Method: SM Batch ID:	3B26002-07 (Water) Chemistry/Physical Parameters I			MDL	Instr: OVEN17		·		Qualifi
Analyte Conventional Method: SM Batch ID:	3B26002-07 (Water) Chemistry/Physical Parameters It 12540C W3B2303 Olved Solids		M)		Instr: OVEN17 Prepared: 02/2	28/23 12:35	Dil	Analyzed	Qualifi
Analyte Conventional Method: SM Batch ID: V	3B26002-07 (Water) Chemistry/Physical Parameters II 12540C W3B2303 olved Solids		M) ND		Instr: OVEN17 Prepared: 02/2	28/23 12:35 mg/l	Dil	Analyzed	Qualifi d Analyst: be
Analyte Conventional Method: SM Batch ID: Total Diss Method: SM Batch ID:	3B26002-07 (Water) Chemistry/Physical Parameters II 12540C W3B2303 olved Solids 12540D W3C0076	Preparation: _NONE (WETCHE	M)		Instr: OVEN17 Prepared: 02/2 10 Instr: OVEN15	28/23 12:35 mg/l	Dil	Analyzed	Qualifi Analyst: be
Analyte Conventional Method: SM Batch ID: Total Diss: Method: SM Batch ID: Total Susp	3B26002-07 (Water) Chemistry/Physical Parameters II 12540C W3B2303 olved Solids 12540D W3C0076	Preparation: _NONE (WETCHE) Preparation: _NONE (WETCHE)	M)		Instr: OVEN17 Prepared: 02/2 10 Instr: OVEN15 Prepared: 03/0	28/23 12:35 mg/l 01/23 12:15	Dil 1	Analyzed 02/28/23	Qualific Analyst: be
Analyte Conventional Method: SM Batch ID: Total Diss: Method: SM Batch ID: Total Susp	3B26002-07 (Water) Chemistry/Physical Parameters II 1 2540C W3B2303 olved Solids 1 2540D W3C0076 pended Solids	Preparation: _NONE (WETCHE) Preparation: _NONE (WETCHE)	M)		Instr: OVEN17 Prepared: 02/2 10 Instr: OVEN15 Prepared: 03/0	28/23 12:35 mg/l 01/23 12:15	Dil 1	02/28/23 03/01/23	Qualific Analyst: be Analyst: me
Analyte Conventional Method: SM Batch ID: Total Dissi Method: SM Batch ID: Total Susp	3B26002-07 (Water) Chemistry/Physical Parameters II 12540C W3B2303 olved Solids 12540D W3C0076 pended Solids ample Results	Preparation: _NONE (WETCHE) Preparation: _NONE (WETCHE)	M)		Instr: OVEN17 Prepared: 02/2 10 Instr: OVEN15 Prepared: 03/0	28/23 12:35 mg/l 01/23 12:15	Dil 1	02/28/23 03/01/23	Qualific Analyst: be Analyst: me (Continued) Luis De La Torr

 Magnesium, Total
 13.4
 0.0780
 1.00
 mg/l
 1
 03/10/23
 M-02

113

23.3

0.689

0.147

Preparation: [CALC]

Preparation: EPA 200.2

Instr: [CALC]

6.62

1.00

Instr: ICP03

Prepared: 03/02/23 10:49

Prepared: 03/02/23 10:49

mg/l

3B26002 Page 12 of 28

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123

Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

04/21/2023 17:40

,			
/ '			

Sa	ample Results								(Continued
Sample:	F-194B-R_2223_W2_01						Sampled: 0	2/25/23 1:05 by	/ Luis De La Torr
	3B26002-09 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
etals by EPA	200 Series Methods								
Method: Cal	culation				Instr: [CALC]				
Batch ID:	[CALC]	Preparation: [CALC]			Prepared: 03/0	02/23 10:49			Analyst: kvn
Hardness	as CaCO3, Total		126	0.689	6.62	mg/l	1	03/10/23	
Method: EPA	A 200.7				Instr: ICP03				
Batch ID:	W3C0190	Preparation: EPA 200.2			Prepared: 03/0	02/23 10:49			Analyst: kvn
Calcium,	Total		26.9	0.147	1.00	mg/l	1	03/10/23	M-0
Magnesiu	m, Total		14.2	0.0780	1.00	mg/l	1	03/10/23	M-0
Sa	ample Results								(Continued
Sample:	ARCAD_WA_CON_2223_W2_01						Sampled: 0	2/25/23 1:45 by	/ Luis De La Torr
	3B26002-10 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifi
letals by EPA	200 Series Methods								
Method: Cal	culation				Instr: [CALC]				
Batch ID:	[CALC]	Preparation: [CALC]			Prepared: 03/0	02/23 10:49			Analyst: kvm
Hardness	as CaCO3, Total		108	0.344	3.31	mg/l	1	03/10/23	
Method: EPA	A 200.7				Instr: ICP03				
Batch ID:	W3C0190	Preparation: EPA 200.2			Prepared: 03/0	02/23 10:49			Analyst: kvm
Calcium,	Total		31.2	0.0736	0.500	mg/l	1	03/10/23	
Magnesiu	m, Total		7.35	0.0390	0.500	mg/l	1	03/10/23	
Sa	ample Results								(Continued
Sample:	F-194B-R_2223_W2_03						Sampled: 0	2/25/23 1:05 by	/ Luis De La Torr
	3B26002-11 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
letals by EPA	200 Series Methods								
Method: Cal	culation				Instr: [CALC]				
Batch ID:	[CALC]	Preparation: [CALC]			Prepared: 03/0	02/23 10:49			Analyst: kvm
	as CaCO3, Total		ND	0.344	3.31	mg/l	1	03/10/23	•
Method: EPA	A 200.7				Instr: ICP03				
Batch ID:		Preparation: EPA 200.2			Prepared: 03/0	02/23 10:49			Analyst: kvn
Calcium, 1			ND	0.0736	0.500	mg/l	1	03/10/23	
Odiolalli, i						J.			

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

MDL

MRL

Units

Dil

Reported:

Qualifier

04/21/2023 17:40

Sample Results Enthalpy Orange

F_193B_R-2223_W2_01

3B26002-01 (Water)

Sampled: 02/25/23 16:55 by Luis De La Torre

Analyzed

Analyte SM 10200-H

Sample:

 Method: Chlorophyll
 Batch ID: 310182
 Prepared: 02/25/23 15:57
 Analyst: ATP

 Chlorophyll a
 ND
 1.0
 mg/M3
 1
 03/21/23
 ND

Result

Project Manager: Brenda Stevens

3B26002 Page 14 of 28

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123

Project Number: SGVCOG Fire Effects Study

Reported:

04/21/2023 17:40

Sample Results Enthalpy Orange

(Continued)

	'	., .							` ,
Sample:	F_194B_R-2223_W2_01					S	ampled: 02/	25/23 17:20 by L	uis De La Torre
	3B26002-02 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
SM 10200-H									
Method: Chl	orophyll		Batch ID: 310182		Prepared: 02/	25/23 17:48			Analyst: ATP
Chlorophy	II a		ND		1.0	mg/M3	1	03/21/23	ND

Project Manager: Brenda Stevens

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Reported:

04/21/2023 17:40

Sample Results

Project Manager: Brenda Stevens

Sa	ample Results Enthalpy Orange							(Continued)
Sample:	ARCAD_WA_CON_2223_W2_01 3B26002-03 (Water)				S	ampled: 02,	/25/23 17:50 by L	uis De La Torre
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
SM 10200-H								
Method: Ch	lorophyll	Batch ID: 310182		Prepared: 02/2	25/23 17:32			Analyst: ATP
Chlorophy	/II a	ND		1.0	mg/M3	1	03/21/23	ND

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123

Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

04/21/2023 17:40

Quality Control Results

Conventional Chemistry/Physical Parameters by	APHA/EPA/AST	M Method	S								
Austra	Result	MDL	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	مريانان
Analyte Satch: W3B2201 - EPA 353.2	Kesuit	MIDL	IVIKL	Units	Levei	Result	76REC	Limits	KPD	Limit	Qualifie
Blank (W3B2201-BLK1)					Prepared & A	nalvzed: 02/	27/23				
Nitrate as N	ND	0.040	0.20	mg/l	riepaieu & A	naiyzeu. 02/	21/23				
Nitrite as N	ND	42	100	ug/l							
NO2+NO3 as N	ND	36	200	ug/l							
LCS (W3B2201-BS1)					Prepared & A	nalyzed: 02/	27/23				
Nitrate as N	0.975	0.040	0.20	mg/l	1.00		98	90-110			
Nitrite as N	997	42	100	ug/l	1000		100	90-110			
NO2+NO3 as N	975	36	200	ug/l	1000		98	90-110			
Matrix Spike (W3B2201-MS1)	Source: 3	B26002-03			Prepared & A	nalyzed: 02/	27/23				
Nitrate as N	2.58	0.040	0.20	mg/l	2.00	0.655	96	90-110			
Nitrite as N	1030	42	100	ug/l	1000	ND	103	90-110			
NO2+NO3 as N	2580	36	200	ug/l	2000	680	95	90-110			
Matrix Spike Dup (W3B2201-MSD1)	Source: 3	B26002-03			Prepared & A	nalyzed: 02/	27/23				
Nitrate as N	2.01	0.040	0.20	mg/l	2.00	0.655	101	90-110	3	20	
Nitrite as N	1030	42	100	ug/l	1000	ND	103	90-110	0	20	
NO2+NO3 as N	2670	36	200	ug/l	2000	680	100	90-110	3	20	
Batch: W3B2303 - SM 2540C											
Blank (W3B2303-BLK1)					Prepared & A	nalyzed: 02/	28/23				
Total Dissolved Solids	· ND	4.0	10	mg/l							
LCS (W3B2303-BS1)					Prepared & A	nalyzed: 02/	28/23				
Total Dissolved Solids	823	4.0	10	mg/l	824		100	97-103			
Duplicate (W3B2303-DUP1)	Source: 3	B24032-01			Prepared & A	nalyzed: 02/	28/23				
Total Dissolved Solids	102000	4.0	10	mg/l		100000			2	10	
Duplicate (W3B2303-DUP2)	Source: 3	B23010-09			Prepared & A	nalyzed: 02/	28/23				
Total Dissolved Solids	965	4.0	10	mg/l		970			0.5	10	
Batch: W3C0076 - SM 2540D											
Blank (W3C0076-BLK1)					Prepared & A	nalyzed: 03/	01/23				
Total Suspended Solids	ND		5	mg/l							
LCS (W3C0076-BS1)					Prepared & A	nalyzed: 03/	01/23				
Total Suspended Solids	52.8		5	mg/l	50.9		104	90-110			
Duplicate (W3C0076-DUP1)	Source: 3	B24140-01			Prepared & A	nalyzed: 03/	01/23				
Total Suspended Solids	39.6		5	mg/l		38.2			4	10	
Duplicate (W3C0076-DUP2)		B27020-02			Prepared & A	-	01/23				
Total Suspended Solids	99.0		5	mg/l		98.5			0.5	10	
Batch: W3C1036 - EPA 351.2											
Blank (W3C1036-BLK1)		0.005	0.40		epared: 03/11/2	3 Analyzed:	03/14/23	3			
TKN	ND	0.065	0.10	mg/l							
Blank (W3C1036-BLK2)	e	0.005	0.40		epared: 03/11/2	3 Analyzed:	03/14/23	3			
TKN	ND	0.065	0.10	mg/l							
3B26002											Page 17 of 2

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123

Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

04/21/2023 17:40

Quality Control Results

Conventional Chemistry/Physical Parameters b	ν ΔΡΗΔ/ΕΡΔ/ΔΟΤ	M Method	s (Continuo	d)							
conventional enemistry/Friginal Farameters b	y Al Tiry El ry AST	W WELFIOO	3 (COITITIAC	u,	Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
atch: W3C1036 - EPA 351.2 (Continued)											
Blank (W3C1036-BLK2)				Pre	pared: 03/11/23	Analyzed:	03/14/23				
Blank (W3C1036-BLK3)				Pre	pared: 03/11/23	Analyzed:	03/21/23				
TKN	· ND	0.065	0.10	mg/l		•					
LCS (W3C1036-BS1)				Pre	pared: 03/11/23	Analyzed:	03/14/23				
TKN	0.944	0.065	0.10	mg/l	1.00		94	90-110			
LCS (W3C1036-BS2)				Pre	pared: 03/11/23	Analyzed:	03/14/23				
TKN	0.967	0.065	0.10	mg/l	1.00		97	90-110			
LCS (W3C1036-BS3)				Pre	pared: 03/11/23	Analyzed:	03/21/23				
TKN	1.00	0.065	0.10	mg/l	1.00		100	90-110			
Matrix Spike (W3C1036-MS1)	Source: 3	C02078-05	RE1	Pre	pared: 03/11/23	Analyzed:	03/14/23				
TKN	1.19	0.065	0.10	mg/l	1.00	0.227	96	90-110			
Matrix Spike (W3C1036-MS2)	Source: 3	C02078-07		Pre	pared: 03/11/23	Analyzed:	03/14/23				
TKN	1.25	0.065	0.10	mg/l	1.00	0.228	103	90-110			
Matrix Spike (W3C1036-MS3)	Source: 3	C02078-05	RE1	Pre	pared: 03/11/23	Analyzed:	03/21/23				
TKN	1.27	0.065	0.10	mg/l	1.00	0.227	104	90-110			
Matrix Spike Dup (W3C1036-MSD1)	Source: 3	C02078-05	RE1	Pre	pared: 03/11/23	Analyzed:	03/14/23				
TKN	1.21	0.065	0.10	mg/l	1.00	0.227	98	90-110	1	10	
Matrix Spike Dup (W3C1036-MSD2)	Source: 3	C02078-07		Pre	pared: 03/11/23	Analyzed:	03/14/23				
TKN	1.23	0.065	0.10	mg/l	1.00	0.228	100	90-110	2	10	
Matrix Spike Dup (W3C1036-MSD3)		C02078-05		Pre	pared: 03/11/23	-					
TKN	1.25	0.065	0.10	mg/l	1.00	0.227	102	90-110	2	10	
atch: W3C1058 - EPA 350.1											
Blank (W3C1058-BLK1)				Pre	pared: 03/12/23	Analyzed:	03/13/23				
Ammonia as N	· ND	0.017	0.10	mg/l							
Blank (W3C1058-BLK2)				Pre	pared: 03/12/23	Analyzed:	03/13/23				
Ammonia as N	· ND	0.017	0.10	mg/l							
LCS (W3C1058-BS1)				Pre	pared: 03/12/23	Analyzed:	03/13/23				
Ammonia as N	0.255	0.017	0.10	mg/l	0.250		102	90-110			
LCS (W3C1058-BS2)				Pre	pared: 03/12/23	Analyzed:	03/13/23				
Ammonia as N	0.264	0.017	0.10	mg/l	0.250		105	90-110			
Matrix Spike (W3C1058-MS1)		B24027-07		Pre	pared: 03/12/23	•					
Ammonia as N	0.386	0.017	0.10	mg/l	0.250	0.133	101	90-110			
Matrix Spike (W3C1058-MS2)		B28212-01			pared: 03/12/23	-					
Ammonia as N	0.677	0.017	0.10	mg/l	0.250	0.424	101	90-110			
Matrix Spike Dup (W3C1058-MSD1)		B24027-07			pared: 03/12/23	-					
Ammonia as N	0.387	0.017	0.10	mg/l	0.250	0.133	101	90-110	0.08	15	
Matrix Spike Dup (W3C1058-MSD2)	Source: 3	B28212-01		Pre	pared: 03/12/23	Analyzed:	03/13/23				
Ammonia as N	0.675	0.017	0.10	mg/l	0.250	0.424	100	90-110	0.3	15	

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

04/21/2023 17:40

Quality Control Results

Hexavalent Chromium by IC										
				Spike	Source		%REC		RPD	
Analyte Resul	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
Batch: W3C0346 - EPA 218.6										
Blank (W3C0346-BLK1)				Prepared & A	nalyzed: 03/0	06/23				
Chromium 6+	0.0079	0.020	ug/l							
Chromium 6+, Dissolved NE	0.0079	0.020	ug/l							
LCS (W3C0346-BS1)				Prepared & A	nalyzed: 03/0	06/23				
Chromium 6+ 5.39	0.0079	0.020	ug/l	5.00		108	90-110			
Chromium 6+, Dissolved 5.39	0.0079	0.020	ug/l	5.00		108	90-110			
Matrix Spike (W3C0346-MS1) Source	3B21165-01			Prepared & A	nalyzed: 03/0	06/23				
Chromium 6+ 5.18	0.0079	0.020	ug/l	5.00	0.344	97	88-112			
Chromium 6+, Dissolved 5.18	0.0079	0.020	ug/l	5.00	0.283	98	88-112			
Matrix Spike (W3C0346-MS2) Source	3B26002-01			Prepared & A	nalyzed: 03/0	06/23				
Chromium 6+ 5.54	0.0079	0.020	ug/l	5.00	0.351	104	88-112			
Chromium 6+, Dissolved 5.54	0.0079	0.020	ug/l	5.00	0.400	103	88-112			
Matrix Spike Dup (W3C0346-MSD1) Source	3B21165-01			Prepared & A	nalyzed: 03/0	06/23				
Chromium 6+ 5.40	0.0079	0.020	ug/l	5.00	0.344	101	88-112	4	10	
Chromium 6+, Dissolved 5.40	0.0079	0.020	ug/l	5.00	0.283	102	88-112	4	10	
Matrix Spike Dup (W3C0346-MSD2) Source	3B26002-01			Prepared & A	nalyzed: 03/0	06/23				
Chromium 6+ 5.47	0.0079	0.020	ug/l	5.00	0.351	102	88-112	1	10	
Chromium 6+, Dissolved 5.47	0.0079	0.020	ug/l	5.00	0.400	101	88-112	1	10	

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

04/21/2023 17:40

Qua

3B26002

Quality Control Results

Metals by EPA 200 Series Methods											
Analyte	Result	MDL	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
atch: W3C0190 - EPA 200.7											
Blank (W3C0190-BLK1)				Pre	pared: 03/02/2	3 Analyzed:	03/10/2	3			
Calcium, Total	ND	0.0736	0.500	mg/l		•					
Magnesium, Total	- · ND	0.0390	0.500	mg/l							
Phosphorus, Dissolved	ND	0.018	0.050	mg/l							
Phosphorus, Total	ND	0.018	0.050	mg/l							
LCS (W3C0190-BS1)				Pre	pared: 03/02/2	3 Analyzed:	03/10/2	3			
Calcium, Total		0.0736	0.500	mg/l	50.2		96	85-115			
Magnesium, Total	49.2	0.0390	0.500	mg/l	50.2		98	85-115			
Phosphorus, Dissolved	- 2.10	0.018	0.050	mg/l	2.00		105	85-115			
Phosphorus, Total	- 2.10	0.018	0.050	mg/l	2.00		105	85-115			
		B26002-03		Pre	pared: 03/02/2	3 Analyzed:	03/10/2	3			
Calcium, Total		0.0736	0.500	mg/l	50.2	26.8	94	70-130			
Magnesium, Total		0.0390	0.500	mg/l	50.2	6.18	98	70-130			
Phosphorus, Dissolved		0.018	0.050	mg/l	2.00	0.0320	109	70-130			
Phosphorus, Total	- 2.20	0.018	0.050	mg/l	2.00	0.0848	106	70-130			
		B27030-01			pared: 03/02/2	•					
Calcium, Total		0.0736	0.500	mg/l	50.2	7.11	95	70-130			
Magnesium, Total		0.0390	0.500	mg/l	50.2	0.564	98	70-130			
Phosphorus, Dissolved		0.018	0.050	mg/l	2.00	0.519	106	70-130			
Phosphorus, Total	- 2.64	0.018	0.050	mg/l	2.00	0.519	106	70-130			
•		BB26002-03	0.500		pared: 03/02/2	•			0	20	
Calcium, Total		0.0736	0.500	mg/l	50.2	26.8	97	70-130	2	30	
Magnesium, Total		0.0390	0.500	mg/l	50.2	6.18	99	70-130	1	30	
Phosphorus, Dissolved		0.018	0.050	mg/l	2.00	0.0320	110	70-130	0.9	30	
Phosphorus, Total	- 2.22	0.018	0.050	mg/l	2.00	0.0848	107	70-130	0.9	30	
Matrix Spike Dup (W3C0190-MSD2) Calcium, Total		3B27030-01 0.0736	0.500	Pre mg/l	pared: 03/02/2 50.2	3 Analyzed: 7.11	03/10/2 96	3 70-130	1	30	
Magnesium, Total		0.0730	0.500	mg/l	50.2	0.564	99	70-130	1	30	
Phosphorus, Dissolved	2.68	0.0390	0.050	mg/l	2.00	0.519	108	70-130	2	30	
Phosphorus, Total		0.018	0.050	mg/l	2.00	0.519	108	70-130	2	30	
	2.00	0.010	0.000	mg/i	2.00	0.010	100	70-100	_	00	
atch: W3C0194 - EPA 200.8				_				_			
Blank (W3C0194-BLK1) Aluminum, Dissolved	ND	4.4	20	ug/l	pared: 03/02/2	3 Analyzed:	03/03/2	5			
Aluminum, Total	ND	4.4	20	ug/l							
Antimony, Dissolved	ND	0.089	0.50	ug/l							
Antimony, Total		0.089	0.50	ug/l							
Arsenic, Dissolved		0.074	0.40	ug/l							
Arsenic, Total		0.074	0.40	ug/l							
,		0.062		٠.٠							

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

04/21/2023 17:40

Quality Control Results

Metals by EPA 200 Series Methods (Continued)											
					Spike	Source		%REC		RPD	
Analyte Resi	ult N	IDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualif
atch: W3C0194 - EPA 200.8 (Continued)											
Blank (W3C0194-BLK1)	ID 0	000	0.40		pared: 03/02/2	23 Analyzed:	03/03/23				
•		029	0.10	ug/l							
,		042	0.20	ug/l							
		042	0.20	ug/l							
,		089	0.20	ug/l							
•		089	0.20	ug/l							
- 11 /		.23	0.50	ug/l							
- 11 /		.23	0.50	ug/l							
,		3.9	20	ug/l							
•	ND 3	3.9	20	ug/l							
,		083	0.20	ug/l							
Lead, Total	ND 0.	083	0.20	ug/l							
,	1D 0	.16	2.0	ug/l							
•	1D 0	.40	2.0	ug/l							
Selenium, Dissolved	ND 0.	067	0.40	ug/l							
Selenium, Total	ND 0.	067	0.40	ug/l							
Silver, Dissolved	1D 0.	030	0.20	ug/l							
Silver, Total	1D 0.	055	0.20	ug/l							
Thallium, Dissolved	ND 0.	021	0.20	ug/l							
Thallium, Total	ND 0.	021	0.20	ug/l							
•	1D 0	.80	10	ug/l							
Zinc, Total	ND 1	1.7	10	ug/l							
Blank (W3C0194-BLK2)				Pre	pared: 03/02/2	23 Analyzed:	03/07/23				
Aluminum, Total	ND 4	1.4	20	ug/l		-					
LCS (W3C0194-BS1)				Pre	pared: 03/02/2	23 Analyzed:	03/03/23				
Aluminum, Dissolved 49).4 4	1.4	20	ug/l	50.0	-	99	85-115			
Aluminum, Total 49	0.4 4	1.4	20	ug/l	50.0		99	85-115			
Antimony, Dissolved 50	0.8	089	0.50	ug/l	50.0		101	85-115			
Antimony, Total 50	0.8	089	0.50	ug/l	50.0		101	85-115			
Arsenic, Dissolved 50	0.1 0.	074	0.40	ug/l	50.0		100	85-115			
Arsenic, Total 50	0.1	074	0.40	ug/l	50.0		100	85-115			
Beryllium, Dissolved 46	6.4 0.	062	0.10	ug/l	50.0		93	85-115			
Beryllium, Total 46	6.4 0.	029	0.10	ug/l	50.0		93	85-115			
Cadmium, Dissolved 49	0.5 0.	042	0.20	ug/l	50.0		99	85-115			
Cadmium, Total 49	0.5 0.	042	0.20	ug/l	50.0		99	85-115			
Chromium, Dissolved 49	0.8 0.	089	0.20	ug/l	50.0		100	85-115			
Chromium, Total 49	0.8 0.	089	0.20	ug/l	50.0		100	85-115			
Copper, Dissolved 50	0.4 0	.23	0.50	ug/l	50.0		101	85-115			
Copper, Total 50	0.4 0	.23	0.50	ug/l	50.0		101	85-115			
Iron, Dissolved 11	10 3	3.9	20	ug/l	1050		106	85-115			
B26002											Page 21 c

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

04/21/2023 17:40

Quality Control Results

Metals by EPA 200 Series Methods (Continued)											
					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
atch: W3C0194 - EPA 200.8 (Continued)											
LCS (W3C0194-BS1)	4440		00		pared: 03/02/2	3 Analyzed:					
Iron, Total		3.9	20	ug/l	1050		106	85-115			
Lead, Dissolved		0.083	0.20	ug/l	50.0		100	85-115			
Lead, Total		0.083	0.20	ug/l	50.0		100	85-115			
Nickel, Dissolved		0.16	2.0	ug/l	50.0		100	85-115			
Nickel, Total		0.40	2.0	ug/l	50.0		100	85-115			
Selenium, Dissolved		0.067	0.40	ug/l	50.0		98	85-115			
Selenium, Total	48.9	0.067	0.40	ug/l	50.0		98	85-115			
Silver, Dissolved	49.8	0.030	0.20	ug/l	50.0		100	85-115			
Silver, Total		0.055	0.20	ug/l	50.0		100	85-115			
Thallium, Dissolved	49.2	0.021	0.20	ug/l	50.0		98	85-115			
Thallium, Total	49.2	0.021	0.20	ug/l	50.0		98	85-115			
Zinc, Dissolved	49.5	0.80	10	ug/l	50.0		99	85-115			
Zinc, Total	49.5	1.7	10	ug/l	50.0		99	85-115			
LCS (W3C0194-BS2)				Pre	pared: 03/02/2	3 Analyzed:	03/07/23	3			
Aluminum, Total	- 50.2	4.4	20	ug/l	50.0		100	85-115			
Matrix Spike (W3C0194-MS1)	Source: 3	B26001-02		Pre	pared: 03/02/2	3 Analyzed	03/03/2	2			
Aluminum, Total		4.4	20	ug/l	50.0	1090	914	70-130			MS-0
Antimony, Total	- 51.3	0.089	0.50	ug/l	50.0	0.930	101	70-130			
Arsenic, Total	- 50.4	0.074	0.40	ug/l	50.0	1.31	98	70-130			
Beryllium, Total	46.8	0.029	0.10	ug/l	50.0	ND	93	70-130			
Cadmium, Total	49.8	0.042	0.20	ug/l	50.0	ND	99	70-130			
Chromium, Total	- 52.8	0.089	0.20	ug/l	50.0	2.70	100	70-130			
Copper, Total	- 58.6	0.23	0.50	ug/l	50.0	8.41	100	70-130			
Iron, Total	2550	3.9	20	ug/l	1050	1410	109	70-130			
Lead, Total	- 55.3	0.083	0.20	ug/l	50.0	5.54	99	70-130			
Nickel, Total	- 51.9	0.40	2.0	ug/l	50.0	1.47	101	70-130			
Selenium, Total	- 48.3	0.067	0.40	ug/l	50.0	0.110	96	70-130			
Silver, Total	- 50.0	0.055	0.20	ug/l	50.0	ND	100	70-130			
Thallium, Total		0.021	0.20	ug/l	50.0	ND	98	70-130			
Zinc, Total	- 89.5	1.7	10	ug/l	50.0	41.2	96	70-130			
,				_							
	Source: 3	B26001-04		Pre	pared: 03/02/2	-		7 0-130			MS-0
			20	ua/l	50.0	747	781				
Aluminum, Total	1140	4.4	20 0.50	ug/l ua/l	50.0 50.0	747 1.81	781 101				
Aluminum, Total Antimony, Total	- 1140 - 52.3	4.4 0.089	0.50	ug/l	50.0	1.81	101	70-130			
Aluminum, Total Antimony, Total Arsenic, Total	- 1140 - 52.3 - 50.1	4.4 0.089 0.074	0.50 0.40	ug/l ug/l	50.0 50.0	1.81 1.24	101 98	70-130 70-130			
Aluminum, Total Antimony, Total Arsenic, Total Beryllium, Total	- 1140 - 52.3 - 50.1 - 45.9	4.4 0.089 0.074 0.029	0.50 0.40 0.10	ug/l ug/l ug/l	50.0 50.0 50.0	1.81 1.24 0.0312	101 98 92	70-130 70-130 70-130			
Aluminum, Total Antimony, Total Arsenic, Total Beryllium, Total Cadmium, Total	52.3 50.1 45.9 49.5	4.4 0.089 0.074 0.029 0.042	0.50 0.40 0.10 0.20	ug/l ug/l ug/l ug/l	50.0 50.0 50.0 50.0	1.81 1.24 0.0312 ND	101 98 92 99	70-130 70-130 70-130 70-130			
Aluminum, Total Antimony, Total Arsenic, Total Beryllium, Total Cadmium, Total Chromium, Total	52.3 50.1 45.9 49.5 52.6	4.4 0.089 0.074 0.029 0.042 0.089	0.50 0.40 0.10 0.20 0.20	ug/l ug/l ug/l ug/l ug/l	50.0 50.0 50.0 50.0 50.0	1.81 1.24 0.0312 ND 1.77	101 98 92 99 101	70-130 70-130 70-130 70-130 70-130			
Aluminum, Total Antimony, Total Arsenic, Total Beryllium, Total Cadmium, Total	52.3 50.1 45.9 49.5 52.6 59.2	4.4 0.089 0.074 0.029 0.042	0.50 0.40 0.10 0.20	ug/l ug/l ug/l ug/l	50.0 50.0 50.0 50.0	1.81 1.24 0.0312 ND	101 98 92 99	70-130 70-130 70-130 70-130			

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Reported: 04/21/2023 17:40

Project Manager: Brenda Stevens

Quality Control Results

Metals by EPA 200 Series Methods (Continue	ed)										
					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualific
tch: W3C0194 - EPA 200.8 (Continued)											
Matrix Spike (W3C0194-MS2)		B26001-04	0.00		pared: 03/02/2	-					
Lead, Total		0.083	0.20	ug/l	50.0	3.57	100	70-130			
Nickel, Total		0.40	2.0	ug/l	50.0	0.971	100	70-130			
Selenium, Total		0.067	0.40	ug/l	50.0	0.202	96	70-130			
Silver, Total		0.055	0.20	ug/l	50.0	ND	100	70-130			
Thallium, Total		0.021	0.20	ug/l	50.0	ND	99	70-130			
Zinc, Total	96.1	1.7	10	ug/l	50.0	48.6	95	70-130			
Matrix Spike (W3C0194-MS3)	Source: 3	B26001-02		Pre	pared: 03/02/2	23 Analyzed:	03/07/2	3			
Aluminum, Total	1560	4.4	20	ug/l	50.0	1090	932	70-130			MS-
Matrix Spike Dup (W3C0194-MSD1)	Source: 3	B26001-02		Pre	pared: 03/02/2	23 Analyzed:	03/03/2	3			
Aluminum, Total	1560	4.4	20	ug/l	50.0	1090	933	70-130	0.6	30	MS-
Antimony, Total	51.6	0.089	0.50	ug/l	50.0	0.930	101	70-130	0.6	30	
Arsenic, Total	51.0	0.074	0.40	ug/l	50.0	1.31	99	70-130	1	30	
Beryllium, Total	46.3	0.029	0.10	ug/l	50.0	ND	92	70-130	1	30	
Cadmium, Total	49.9	0.042	0.20	ug/l	50.0	ND	100	70-130	0.2	30	
Chromium, Total	53.3	0.089	0.20	ug/l	50.0	2.70	101	70-130	1	30	
Copper, Total	59.8	0.23	0.50	ug/l	50.0	8.41	103	70-130	2	30	
Iron, Total	2560	3.9	20	ug/l	1050	1410	109	70-130	0.05	30	
Lead, Total	55.9	0.083	0.20	ug/l	50.0	5.54	101	70-130	1	30	
Nickel, Total	52.3	0.40	2.0	ug/l	50.0	1.47	102	70-130	0.7	30	
Selenium, Total	49.2	0.067	0.40	ug/l	50.0	0.110	98	70-130	2	30	
Silver, Total	50.5	0.055	0.20	ug/l	50.0	ND	101	70-130	1	30	
Thallium, Total	49.5	0.021	0.20	ug/l	50.0	ND	99	70-130	0.4	30	
Zinc, Total	90.6	1.7	10	ug/l	50.0	41.2	99	70-130	1	30	
				-	1 02 (02 (02/02/2	_			
Matrix Spike Dup (W3C0194-MSD2) Aluminum, Total		B26001-04 4.4	20	ug/l	pared: 03/02/2 50.0	23 Analyzed: 747	819	3 70-130	2	30	MS-
Antimony, Total	52.2	0.089	0.50	ug/l	50.0	1.81	101	70-130	0.2	30	
Arsenic, Total	50.9	0.074	0.40	ug/l	50.0	1.24	99	70-130	2	30	
Beryllium, Total	46.1	0.029	0.10	ug/l	50.0	0.0312	92	70-130	0.5	30	
Cadmium, Total		0.042	0.20	ug/l	50.0	ND	99	70-130	0.07	30	
Chromium, Total		0.089	0.20	ug/l	50.0	1.77	100	70-130	1	30	
Copper, Total		0.23	0.50	ug/l	50.0	7.97	102	70-130	0.7	30	
Iron, Total		3.9	20	ug/l	1050	873	118	70-130	0.3	30	
Lead, Total		0.083	0.20	ug/l	50.0	3.57	100	70-130	0.2	30	
Nickel, Total		0.40	2.0	ug/l	50.0	0.971	100	70-130	0.6	30	
Selenium, Total		0.40	0.40	· ·	50.0	0.971		70-130	0.6	30	
,				ug/l			97				
Silver, Total		0.055	0.20	ug/l	50.0	ND	100	70-130	0.2	30	
Thallium, Total	49.5	0.021	0.20	ug/l	50.0	ND	99	70-130	0.2	30	

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

04/21/2023 17:40

Quality

Quality Control Results

Metals by EPA 200 Series Methods (Continued	d)										
					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
Batch: W3C0194 - EPA 200.8 (Continued)											
Matrix Spike Dup (W3C0194-MSD3)	Source: 3	B26001-02		Pre	pared: 03/02/2	23 Analyzed:	03/07/2	3			
Aluminum, Total	1550	4.4	20	ug/l	50.0	1090	922	70-130	0.3	30	MS-02
Batch: W3C0293 - EPA 245.1											
Blank (W3C0293-BLK1)				Pre	pared: 03/03/2	23 Analyzed:	03/06/2	3			
Mercury, Dissolved	ND	0.037	0.050	ug/l							
Mercury, Total	ND	0.037	0.050	ug/l							
LCS (W3C0293-BS1)				Pre	pared: 03/03/2	23 Analyzed:	03/06/2	3			
Mercury, Dissolved	1.06	0.037	0.050	ug/l	1.00		106	85-115			
Mercury, Total	1.06	0.037	0.050	ug/l	1.00		106	85-115			
Matrix Spike (W3C0293-MS1)	Source: 3	B26001-01		Pre	pared: 03/03/2	23 Analyzed:	03/06/2	3			
Mercury, Dissolved	1.21	0.037	0.050	ug/l	1.00	ND	121	70-130			
Mercury, Total	1.21	0.037	0.050	ug/l	1.00	0.0453	117	70-130			
Matrix Spike (W3C0293-MS2)	Source: 3	B26002-03		Pre	pared: 03/03/2	23 Analyzed:	03/06/2	3			
Mercury, Dissolved	1.06	0.037	0.050	ug/l	1.00	0.0527	100	70-130			
Mercury, Total	1.06	0.037	0.050	ug/l	1.00	0.0419	101	70-130			
Matrix Spike Dup (W3C0293-MSD1)	Source: 3	B26001-01		Pre	pared: 03/03/2	23 Analyzed:	03/06/2	3			
Mercury, Total	0.921	0.037	0.050	ug/l	1.00	0.0453	88	70-130	27	20	MS-02
Matrix Spike Dup (W3C0293-MSD2)	Source: 3	B26002-03		Pre	pared: 03/03/2	23 Analyzed:	03/06/2	3			
Mercury, Total	1.44	0.037	0.050	ug/l	1.00	0.0419	140	70-130	31	20	MS-02

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

04/21/2023 17:40

Quality Control Results

Semivolatile Organics - Low Level by Tandem GC/MS/MS											
					Spike	Source	0/ DEC	%REC		RPD	
Analyte Re Satch: W3C0154 - EPA 625.1	esult	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifi
Blank (W3C0154-BLK1)				Dro	pared: 03/02/2	2 Analyzad	02/14/23	,			
•	ND	1.2	5.0	ng/l	pareu. 03/02/2	.5 Allalyzeu.	. 03/ 14/23	•			
Acenaphthylene	ND	1.0	5.0	ng/l							
Anthracene	ND	1.1	5.0	ng/l							
Benzo (a) anthracene	ND	0.92	5.0	ng/l							
Benzo (a) pyrene	ND	0.97	5.0	ng/l							
Benzo (b) fluoranthene	ND	1.6	5.0	ng/l							
Benzo (g,h,i) perylene	ND	1.0	5.0	ng/l							
Benzo (k) fluoranthene	ND	1.2	5.0	ng/l							
Chrysene	ND	1.4	5.0	ng/l							
Dibenzo (a,h) anthracene	ND	1.2	5.0	ng/l							
Fluoranthene	ND	1.5	5.0	ng/l							
Fluorene	ND	1.1	5.0	ng/l							
Indeno (1,2,3-cd) pyrene	ND	0.97	5.0	ng/l							
Naphthalene	ND	3.2	5.0	ng/l							
Phenanthrene	ND	3.0	5.0	ng/l							
Pyrene	ND	1.4	5.0	ng/l							
Surrogate(s)											
•	62.6			ng/l	100		63	62-120			
Perylene-d12	45.6			ng/l	100		46	36-120			
LCS (W3C0154-BS1)					pared: 03/02/2	23 Analyzed:					
•	42.3	1.2	5.0	ng/l	50.0		85	60-132			
• ,	38.3	1.0	5.0	ng/l	50.0		77	54-126			
	34.5	1.1	5.0	ng/l	50.0		69	43-120			
()	29.2	0.92	5.0	ng/l	50.0		58	42-133			
() 1 3	24.2	0.97	5.0	ng/l	50.0		48	32-148			
()	29.6	1.6	5.0	ng/l	50.0		59	42-140			AN-
(3/ //1)	28.4	1.0	5.0	ng/l	50.0		57	0.1-195			
	27.1	1.2	5.0	ng/l	50.0		54	25-146			AN-
•	28.4	1.4	5.0	ng/l	50.0		57	44-140			
Dibenzo (a,h) anthracene	30.5	1.2	5.0	ng/l	50.0		61	0.1-200			
	37.5	1.5	5.0	ng/l	50.0		75	43-121			
Fluorene	40.1	1.1	5.0	ng/l	50.0		80	70-120			
(, , , , , , , , , , , , , , , , , , ,	28.9	0.97	5.0	ng/l	50.0		58	0.1-151			
Naphthalene 4	42.2	3.2	5.0	ng/l	50.0		84	36-120			
Phenanthrene 3	39.7	3.0	5.0	ng/l	50.0		79	65-120			
•	38.2	1.4	5.0	ng/l	50.0		76	70-120			
Surrogate(s) 1,3-Dimethyl-2-nitrobenzene	72 6			ng/l	100		73	62-120			
,	72.6 40.4			ng/l	100		73 40	36-120			

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

04/21/2023 17:40

					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualific
atch: W3C0154 - EPA 625.1 (Continued)											
LCS Dup (W3C0154-BSD1)				Pre	pared: 03/02/2	23 Analyzed:	03/14/23	3			
Acenaphthene	40.3	1.2	5.0	ng/l	50.0		81	60-132	5	30	
Acenaphthylene	38.7	1.0	5.0	ng/l	50.0		77	54-126	1	30	
Anthracene	33.0	1.1	5.0	ng/l	50.0		66	43-120	4	30	
Benzo (a) anthracene	28.5	0.92	5.0	ng/l	50.0		57	42-133	3	30	
Benzo (a) pyrene	22.6	0.97	5.0	ng/l	50.0		45	32-148	7	30	
Benzo (b) fluoranthene	29.5	1.6	5.0	ng/l	50.0		59	42-140	0.4	30	AN-I
Benzo (g,h,i) perylene	26.3	1.0	5.0	ng/l	50.0		53	0.1-195	8	30	
Benzo (k) fluoranthene	28.2	1.2	5.0	ng/l	50.0		56	25-146	4	30	AN-
Chrysene	30.8	1.4	5.0	ng/l	50.0		62	44-140	8	30	
Dibenzo (a,h) anthracene	30.2	1.2	5.0	ng/l	50.0		60	0.1-200	1	30	
Fluoranthene	36.7	1.5	5.0	ng/l	50.0		73	43-121	2	30	
Fluorene	38.8	1.1	5.0	ng/l	50.0		78	70-120	3	30	
Indeno (1,2,3-cd) pyrene	- 28.0	0.97	5.0	ng/l	50.0		56	0.1-151	3	30	
Naphthalene	38.8	3.2	5.0	ng/l	50.0		78	36-120	8	30	
Phenanthrene	38.6	3.0	5.0	ng/l	50.0		77	65-120	3	30	
Pyrene	36.9	1.4	5.0	ng/l	50.0		74	70-120	3	30	
Surrogate(s)											
1,3-Dimethyl-2-nitrobenzene	60.6			ng/l	100		61	62-120			S-
Perylene-d12	38.9			ng/l	100		39	36-120			

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

04/21/2023 17:40

Item

Notes and Definitions

	Deminion
AN-IP	Sample results for structural isomers may have contribution from their isomeric pair.
J	Estimated conc. detected <mrl and="">MDL.</mrl>
M-02	Due to the nature of matrix interferences, sample was diluted prior to preparation. The MDL and MRL were raised due to the dilution.
MS-02 ND	The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte inherent in the sample. Not Detected
S-11	Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.
S-GC	Surrogate recovery outside of control limits due to a possible matrix effect. The data was accepted based on valid recovery of the remaining surrogate.
%REC	Percent Recovery
Dil	Dilution
MDL	Method Detection Limit
MRL	The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. The MRL is also known as Limit of Quantitation (LOQ)
ND	NOT DETECTED at or above the Method Reporting Limit (MRL). If Method Detection Limit (MDL) is reported, then ND means not detected at or above the MDL.
RPD	Relative Percent Difference
Source	Sample that was matrix spiked or duplicated.

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

All results are expressed on wet weight basis unless otherwise specified.

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

2	B	2	6002
---	---	---	------

				Chain of Custody	Page of		
rom:		То:		Lab Notes:			
WSP Environment & Infrastructure Solutions Weck Laboratori 2177 Sky Park Court San Diego, CA 92123 Industry, CA 91 661) 373-5505 (626) 336-2139 (626) 336-2139 Contact: Brenda Stevens/Kimberly Henry Industry Contact: Chris			s enue 745 Fax				
Office. Brenda Stevens/Kimberry Fierry	Project Number:		Project Name:		Sample Matrix:		
C015102726	5025-22-0004			SGVCOG Fire Effects Study	Water		
SampleID	Sample Date	Sample Time	Sample Type	Analysis	Container	Pres	No. of Bottles
193B-R_2223_W2_01	2-25-23	16 55	Composite	Tot&Diss.Metal,Ammonia, Nutrients(N03,N02,TKN, TotN,TotP,DissP), Chlorophyll-a, PAH	1-L Amber Glass	≤6°C	18
194B-R_2223_W2_01		1720	Composite	Tot&Diss.Metal,Ammonia, Nutrients(N03,N02,TKN, TotN,TotP,DissP), Chlorophyll-a, PAH	1-L Amber Glass	≤6°C	18
RCAD_WA_CON_2223_W2_01		1750	Composite	Tot&Diss.Metal,Ammonia, Nutrients(N03,N02,TKN, TotN,TotP,DissP), Chlorophyll-a, PAH	1-L Amber Glass	≤6°C	18
193B-R_2223_W2_01		0040	Grab	TDS (SM 2540C); TSS (SM 2540D)	2-L Poly	Unpres.	1
194B-R_2223_W2_01		0105	Grab	TDS (SM 2540C); TSS (SM 2540D)	2-L Poly	Unpres.	1
CAD_WA_CON_2223_W2_01		0145	Grab	TDS (SM 2540C); TSS (SM 2540D)	2-L Poly	Unpres.	1
94B-R_2223_W2-03		0105	Grab	TDS (SM 2540C); TSS (SM 2540D)	2-L Poly	Unpres.	1
93B-R_2223_W2_01		0040	Grab	Total Hardness (EPA 200.7)	500-mL Poly	HNO3	1
94B-R_2223_W2_01		0105	Grab	Total Hardness (EPA 200.7)	500-mL Poly	HNO3	1
CAD_WA_CON_2223_W2_01		0145	Grab	Total Hardness (EPA 200.7)	500-mL Poly	HNO3	1
194B-R_2223_W2-03		0105	Grab	Total Hardness (EPA 200.7)	500-mL Poly	HNO3	1
pecial Instructions/Comments:							
etals (Dissolved and Total) to include al ease provide results to Brenda Stevens	luminum, antimon (brenda.stevens	y, arsenic, berylliur @wsp.com) and Li	m, cadmium, chrom uis De La Torre (luis	ium (total), chromium (hexavalent), copper, iron, lead, mercury, nickel, selenium, silve s.delatorre@wsp.com) Refer to enail for compesitiv	r, thallium, and zinc		
Sampled and Relinquished By:				Received By:		100	
				Print: Chris Samustmandert Sign: Pfor Samustmandert	Date/Time: 2/26/23 /220		
wy pare zero				Print:	Date/Time:		
gn:				Sign:			
				Print:	Date/Time:		
ign:				Sign:			OC T-

Relingished By

Subcontract Order

Date / Time Page 1 of 1

WECK LABORATO					
Subcontracted La Enthalpy Analytica 931 W. Barkley Av Orange, CA 9286 Phone: (714) 771-6 Fax: (714) 538-120	al e 58 5900 9	Client N Project Sample Drinking Need Ti	ound Time: Manager: Name: r Employed by: g Water: ransfer File (xls): g Number:	Yes / No	
Project Nui Analysis	mber: 3B26002	Expires	Comments		
Sample Name: Sampled: Chlorophyll-a - SN	3B26002-01/F_193B_R-2223_W2_01 02/25/2023 16:55 и 10200Н	Matrix: Water 02/27/2023 16:55	Sampled By: L 1011mL filtered o needed.	uis De La Torre n 2/26/23 at 15:57 by HEQ.	TestAmerica EDD
Sample Name: Sampled: Chlorophyll-a - SN	3B26002-02/F_194B_R-2223_W2_01 02/25/2023 17:20 // 10200H	Matrix: Water 02/27/2023 17:20	Sampled By: L 1008mL filtered of needed.	uis De La Torre on 2/26/23 at 17:48 by HEQ.	TestAmerica EDD
Sample Name: Sampled: Chlorophyll-a - SN	3B26002-03/ARCAD_WA_CON_2223_W 02/25/2023	/2_01	Sampled By: L 1016mL filtered o needed.	uis De La Torre on 2/26/23 at 17:32 by HEQ.	TestAmerica EDD
Remarks / Spec	ial Comments:			Sample Condition Temperature:_ Preserved: Evidence Seal Intact: Container Attacked: Preserved at Lab:	Yes / No Yes / No Yes / No Yes / No
Relingished By	D	ate / Time Received E	Зу		Date / Time

Date / Time Received By

Subcontract Order

Subcontracted Laboratory:

Enthalpy Analytical 931 W. Barkley Ave Orange, CA 92868 Phone: (714) 771-6900 Fax: (714) 538-1209

Turn Around Time:

Normal unless noted in comments

Client Manager:

Chris Samatmanakit

Project Name:

San Gabriel Valley Council of Governmer

Sampler Employed by:

Drinking Water:

(No)

Need Transfer File (xls):

Tracking Number:

Project Number: 3B26002

Analysis

Expires

Comments

Sample Name:

3B26002-01/F_193B_R-2223_W2_01

Sampled:

02/25/2023 16:55

Matrix: Water

Sampled By: Luis De La Torre

Chlorophyll-a - SM 10200H

02/27/2023 16:55

1011mL filtered on 2/26/23 at 15:57 by HEQ. TestAmerica EDD

needed.

Sample Name:

3B26002-02/F_194B_R-2223_W2_01

Sampled:

02/25/2023 17:20

Matrix: Water

Sampled By: Luis De La Torre

Chlorophyll-a - SM 10200H

Chlorophyll-a - SM 10200H

02/27/2023 17:20

1008mL filtered on 2/26/23 at 17:48 by HEQ. TestAmerica EDD

needed.

Sample Name:

3B26002-03/ARCAD_WA_CON_2223_W2_01

Sampled:

02/25/2023 17:50

Matrix: Water

02/27/2023 17:50

Sampled By: Luis De La Torre

1016mL filtered on 2/26/23 at 17:32 by HEQ. TestAmerica EDD

needed.

Remarks	/	Special	Comments:
I CHILLIAN NO	,	Special	COLLINGIA

Sample Condition

Temperature:

Preserved:

Evidence Seal Intact:

Yes / No Yes / No

Container Attacked:

Yes / No

Preserved at Lab:

Yes / No

Relingished By

3/10/23

Date / Time

Date / Time Received By

Date / Time

Page 1 of t

Enthalpy Analytical 931 West Barkley Ave Orange, CA 92868 (714) 771-6900

enthalpy.com

Lab Job Number: 481271

Report Level: II

Report Date: 03/24/2023

Analytical Report *prepared for:*

Chris Samatmanakit Weck Laboratories 14859 Clark Ave. City of Industry, CA 91745

Location: 3B26002 San Gabriel Valley Council of Gov.

Authorized for release by:

duphgias Le

Quynhgiao Le, Project Manager

714-7716900

quynhgiao.le@enthalpy.com

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the above signature which applies to this PDF file as well as any associated electronic data deliverable files. The results contained in this report meet all requirements of NELAP and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

CA ELAP# 1338, NELAP# 4038, SCAQMD LAP# 18LA0518, LACSD ID# 10105

Sample Summary

Chris Samatmanakit

Lab Job #: 481271

Location:

Weck Laboratories 14859 Clark Ave.

3B26002 San Gabriel Valley Council of Gov.

City of Industry, CA

Date Received: 03/10/23

91745

Sample ID	Lab ID	Collected	Matrix
3B260002-01/F_193B_R-2223_W2_01	481271-001	02/25/23 16:55	Water
3B26002-02/F_194B_R-2223_W2_01	481271-002	02/25/23 17:20	Water
3B26002-03/ARCAD WA CON2223 W2 01	481271-003	02/25/23 17:50	Water

Subcontract Order

Subcontracted Laboratory:			Turn Aro	und Time:	Normal unless noted in comments
Enthalpy Analytical			Client M	anager:	Chris Samatmanakit
931 W. Barkley Ave			Project N	_	San Gabriel Valley Council of Governmen
Orange, CA 92868			-		San Gabrier valley Council of Governmen
Phone: (714) 771-6900 Fax: (714) 538-1209			-	Employed by:	
1 dx. (7 1+); 550-1205			Drinking		Yes / (No)
			Need Tra	insfer File (xls):	(Yes) / No
			Tracking	Number:	
Project Number:	3B26002				
Analysis		Expires		Comments	
		Ехрисэ		Comments	
	01/F_193B_R-2223_W2_01				
Sampled: 02/25/202 Chlorophyll-a - SM 10200H	23 16:55	Matrix: W		Sampled By: Lu	
Chiorophyli-a - Sivi lozoon		02/27/202	3 16:55	needed.	2/26/23 at 15:57 by HEQ. TestAmerica EDD
				necaca.	
	02/F_194B_R-2223_W2_01		_		
Sampled: 02/25/202 Chlorophyll-a - SM 10200H	3 17:20	Matrix: W		Sampled By: Lu	
SW IOZOGI		02/21/202	5 17.20	needed.	n 2/26/23 at 17:48 by HEQ. TestAmerica EDD
Samula Namas 202002	22/40640 24/4 6024 0000 24/6				
Sample Name: 3B26002-0 Sampled: 02/25/202)3/ARCAD_WA_CON_2223_W2 3_17:50		latar	Commind Day L.	de De Le Terre
Chlorophyll-a - SM 10200H	.5 17.50	Matrix: W		Sampled By: Lu	ils De La Iorre ii 2/26/23 at 17:32 by HEQ. TestAmerica EDD
· [,,		needed.	La Loy 25 de 17.52 by FIEQ. Testamenta Lob
					:
Remarks / Special Comme	nts:				ample Condition
					Temperature:
					Preserved: Yes / No
					•
					Evidence Seal Intact: Yes / No
					Container Attacked: Yes / No
					Preserved at Lab: Yes / No
Allan	G 3/10/23 152	9 -	1.	D	03/10/23 333
elingished By	•	/~	eceived M	10	Date / Time
	2 0/1	33	uccircu je y		Date / Illie
olings Food Py	30/19/20/37			.	
elingistied By	Date	e/Time Re	eceived By		Date / Time
					Page 1011

SAMPLE ACCEPTANCE CHECKLIST

•	tion 1		-10 - 1 - 2			
Cli	ent: Weck 1	aboratoras, Inc. Projec	ct: 3B26002	,		
	te Received: <u>03</u>		ler's Name Present:	XYes	No	
Se	tion 2					
Sai	nple(s) received	in a cooler? 🔀 Yes, How many? 📘 📗	NO (skip section 2)		Temp (°C) No Cooler)	:I
Sai	mple Temp (°C), (One from each cooler: #1: 19.2 #2:_	#3:	#4:		
	cceptance range is < 6°	C but not frozen (for Microbiology samples, acceptance rang	ge is < 10°C but not frozen). It	t is acceptable ;		collected
١		ne day as sample receipt to have a higher temperature as lor	ng as there is evidence that co	oling has begu	n.)	
Sn	pping Informatio	n:				
Se	ction 3		<u></u>			
W	s the cooler pac		bble Wrap Styro	ofoam		
Со	oler Temp (°C):	#1: 3.6 #2:	#3:	#4: <u></u>	-	
Se	ction 4			YES	NO	N/A
W	s a COC received]?				
Ar	sample IDs pres	ent?		V	·	17.0
Ar	sampling dates	& times present?				
ls a	relinquished sig	nature present?				
Ar	the tests requir	ed clearly indicated on the COC?		1		
	custody seals p					iles -
		s are present, were they intact?				\cup
Ar		ed in plastic bags? (Recommended for Micr	robiology samples)			
		ve intact? If no, indicate in Section 4 below.	<u> </u>			
_		agree with COC? (ID, dates and times)			-	
_		collected in the correct containers for the re	quired tests?			
		ners labeled with the correct preservatives				
ls 1		in the VOA vials greater than 5-6 mm in diar				V
_		ount of sample submitted for the requested				
Se	ction 5 Explana	tions/Comments				
Se	ction 6					
Fo	r discrepancies, h	ow was the Project Manager notified? \(\subseteq \text{V} \)	/erbal PM Initials: Email (email sent to,			
Pro	ject Manager's r					
Co	mpleted By:(Enthalpy Analytical, a subsidiary of Montrose 931 W. Barkley Ave, Orange, CA 92868 • T: (714) www.enthalpy.com/s Sample Acceptance Checklist – R) 771-6900 • F: (714) 538-120 socal	9		

Analysis Results for 481271

Chris Samatmanakit Weck Laboratories 14859 Clark Ave. City of Industry, CA 91745

Lab Job #: 481271

Location: 3B26002 San Gabriel Valley Council of Gov.

Date Received: 03/10/23

Sample ID: Lab ID: 481271-001 Collected: 02/25/23 16:55

Received filtered & frozen, Volume: 1011 mL

481271-001 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: SM 10200-H									
Chlorophyll a	ND		mg/M3	1.0	1	310182	02/25/23 15:57	03/21/23 17:27	ATP

Sample ID: Lab ID: 481271-002 Collected: 02/25/23 17:20

Received filtered & frozen. Volume: 1008 mL

481271-002 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: SM 10200-H									
Chlorophyll a	ND		mg/M3	1.0	1	310182	02/25/23 17:48	03/21/23 17:27	ATP

Sample ID: Lab ID: 481271-003 Collected: 02/25/23 17:50

3B26002-03/ARCAD_WA_CON2223_W2_01 Matrix: Water

Received filtered & frozen. Volume: 1016 mL

481271-003 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: SM 10200-H									
Chlorophyll a	ND		mg/M3	1.0	1	310182	02/25/23 17:32	03/21/23 17:27	ATP

ND Not Detected

FINAL REPORT

Work Orders: 3C10137 Report Date: 4/21/2023

Received Date: 3/12/2023

Turnaround Time: Normal

Phones: (858) 514-7729

Fax: (858) 278-5300

P.O. #: C015102726

Billing Code:

Attn: Brenda Stevens

Client: WSP USA E&I Inc. - San Diego

Project: SGVCOG Fire Effects Study

9177 Sky Park Court, Ste A San Diego, CA 92123

Dod-ELAP ANAB #ADE-2882 • Dod-ISO ANAB # • ELAP-CA #1132 • EPA-UCMR #CA00211 • ISO17025 ANAB #L2457.01 • LACSD #10143

This is a complete final report. The information in this report applies to the samples analyzed in accordance with the chain-of-custody document. Weck Laboratories certifies that the test results meet all requirements of TNI unless noted by qualifiers or written in the Case Narrative. This analytical report must be reproduced in its entirety.

Dear Brenda Stevens,

Enclosed are the results of analyses for samples received 3/12/23 with the Chain-of-Custody document. The samples were received in good condition, at 1.1 °C and on ice. All analyses met the method criteria except as noted in the case narrative or in the report with data qualifiers.

Reviewed by:

Chris Samatmanakit Project Manager

1: State

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Reported:

04/21/2023 15:37

Sample Summary

Sample Name	Sampled By	Lab ID	Matrix	Sampled	Qualifiers
F_193B_R-2223_W3_01	Luis De La Torre	3C10137-01	Water	03/11/23 02:00	
F_194B_R-2223_W3_01	Luis De La Torre	3C10137-02	Water	03/11/23 02:20	
ARCAD_WA_CON_2223_W3_01	Luis De La Torre	3C10137-03	Water	03/11/23 02:00	
F-193B-R_2223_W3_01	Luis De La Torre	3C10137-04	Water	03/10/23 15:45	
F-194B-R_2223_W3_01	Luis De La Torre	3C10137-05	Water	03/10/23 16:10	
ARCAD_WA_CON_2223_W3_01	Luis De La Torre	3C10137-06	Water	03/10/23 15:00	
ARCAD_WA_CON_2223_W3_02	Luis De La Torre	3C10137-07	Water	03/10/23 15:00	
F-193B-R_2223_W3_01	Luis De La Torre	3C10137-08	Water	03/10/23 15:45	
F-194B-R_2223_W3_01	Luis De La Torre	3C10137-09	Water	03/10/23 16:10	
ARCAD_WA_CON_2223_W3_01	Luis De La Torre	3C10137-10	Water	03/10/23 15:00	
ARCAD_WA_CON_2223_W3_02	Luis De La Torre	3C10137-11	Water	03/10/23 15:00	

Project Manager: Brenda Stevens

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123

Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

04/21/2023 15:37

Sample Results

Sample:	F_193B_R-2223_W3_01					Sampled:	03/11/23 2:00 by L	uis De La Tori
	3C10137-01 (Water)							
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifi
nventional	Chemistry/Physical Parameters	by APHA/EPA/ASTM Methods						
/lethod: Cal	Iculation			Instr: [CALC]				
Batch ID:	[CALC]	Preparation: [CALC]		Prepared: 03/2	21/23 13:00			Analyst: YM
Nitrogen,	Total	2.3	0.036	0.20	mg/l	1	03/24/23	
Method: EPA	A 350.1			Instr: AA06				
Batch ID:	W3C1631	Preparation: _NONE (WETCHEM)		Prepared: 03/	19/23 09:28			Analyst: HE
Ammonia	as N	0.028	0.017	0.10	mg/l	1	03/20/23	
Method: EPA	A 351.2			Instr: AA06				
Batch ID:	W3C1819	Preparation: _NONE (WETCHEM)		Prepared: 03/2	21/23 13:00			Analyst: YM
TKN		0.55	0.13	0.20	mg/l	1	03/24/23	M-0
Method: EPA	A 353.2			Instr: AA01				
Batch ID:	W3C1246	Preparation: _NONE (WETCHEM)		Prepared: 03/	14/23 13:24			Analyst: isr
Nitrate as	N	1.8	0.040	0.20	mg/l	1	03/14/23 16:32	FILT, O-0
Nitrite as I	Ν	ND	42	100	ug/l	1	03/14/23 16:32	FILT, O-0
NO2+NO3	as N	1800	36	200	ug/l	1	03/14/23	FII
exavalent Cl	hromium by IC							
Method: EPA	A 218.6			Instr: LC13				
Batch ID:	W3C1989	Preparation: _NONE (LC)		Prepared: 03/2	22/23 14:38			Analyst: JA
Chromiun	n 6+	0.46	0.0079	0.020	ug/l	1	03/22/23	
Chromiun	n 6+, Dissolved	0.46	0.0079	0.020	ug/l	1	03/22/23	O-09, P
etals by EPA	A 200 Series Methods							
Method: EPA	A 200.7			Instr: ICP03				
Batch ID:	W3C1904	Preparation: EPA 200.2		Prepared: 03/2	22/23 10:11			Analyst: kvi
Phosphor	rus, Dissolved	0.050	0.018	0.050	mg/l	1	03/23/23	
Phosphor	rus, Total	0.18	0.018	0.050	mg/l	1	03/23/23	
Method: EPA	A 200.8			Instr: ICPMS06	5			
Batch ID:	W3C1908	Preparation: EPA 200.2		Prepared: 03/2	22/23 15:46			Analyst: j
Aluminum	n, Dissolved	27	4.4	20	ug/l	1	03/23/23	
Aluminum	n, Total	4100	4.4	20	ug/l	1	03/24/23	
Antimony	, Dissolved	0.54	0.089	0.50	ug/l	1	03/23/23	
Antimony	, Total	1.1	0.089	0.50	ug/l	1	03/23/23	
Arsenic, E	Dissolved	0.67	0.074	0.40	ug/l	1	03/23/23	
Arsenic, 1	Total	2.2	0.074	0.40	ug/l	1	03/23/23	
Beryllium,	Dissolved	ND	0.062	0.10	ug/l	1	03/23/23	
Beryllium	, Total	0.21	0.029	0.10	ug/l	1	03/23/23	
Cadmium,	, Dissolved	ND	0.042	0.20	ug/l	1	03/23/23	
Cadmium,		ND	0.042	0.20	ug/l	1	03/23/23	
		0.55	0.089	0.20	ug/l	1	03/23/23	
Chromiun	,	5.2	0.089	0.20	ug/l	1	03/23/23	
	,	J.2	3.000	5.25	~9′'	•	50, 20, 20	

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

04/21/2023 15:37

Sample Results

Sample:	F_193B_R-2223_W3_01					Sampled: 03	3/11/23 2:00 by	
	3C10137-01 (Water)							(Continued
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifi
etals by EPA	200 Series Methods (Continue	ed)						
Method: EPA	200.8			Instr: ICPMS06	5			
Batch ID: V		Preparation: EPA 200.2		Prepared: 03/2				Analyst: jo
Copper, Di		1.9	0.23	0.50	ug/l	1	03/23/23	
Copper, To			0.23	0.50	ug/l	1	03/23/23	
Iron, Disso	5.704	21	3.9	20	ug/l	1	03/23/23	
Iron, Total		5200	3.9	20	ug/l	1	03/23/23	
Lead, Diss	olved	ND	0.083	0.20	ug/l	1	03/23/23	
Lead, Tota	d	7.4	0.083	0.20	ug/l	1	03/23/23	
Nickel, Dis	ssolved	0.24	0.16	2.0	ug/l	1	03/23/23	
Nickel, Tot	tal	4.2	0.40	2.0	ug/l	1	03/23/23	
Selenium,	Dissolved	0.080	0.067	0.40	ug/l	1	03/23/23	
Selenium,	Total	0.12	0.067	0.40	ug/l	1	03/23/23	
Silver, Diss	solved	ND	0.030	0.20	ug/l	1	03/23/23	
Silver, Tota	al	ND	0.055	0.20	ug/l	1	03/23/23	
Thallium, D	Dissolved	ND	0.021	0.20	ug/l	1	03/23/23	
Thallium, 1	Total	0.030	0.021	0.20	ug/l	1	03/23/23	
Zinc, Disse		2.9	1.7	10	ug/l	1	03/23/23	
Zinc, Total		50	1.7	10	ug/l	1	03/23/23	
Method: EPA	x 245.1			Instr: HG03				
Batch ID: V	W3C1735	Preparation: EPA 245.1		Prepared: 03/2	21/23 09:11			Analyst: KV
Mercury, D	issolved	ND	0.037	0.050	ug/l	1	03/22/23	
Mercury, To	otal	ND	0.037	0.050	ug/l	1	03/22/23	
mivolatile O	rganics - Low Level by Tandem	GC/MS/MS						
	-	GC/MS/MS		Instr: GCMS15				
	625.1	GC/MS/MS Preparation: EPA 3535/SPE		Instr: GCMS15 Prepared: 03/				Analyst: E
∕lethod: EPA	625.1 N3C1531		6.0			1	04/14/23	-
Method: EPA Batch ID: V	N3C1531	Preparation: EPA 3535/SPE	6.0 5.0	Prepared: 03/	17/23 08:20	1 1	04/14/23 04/14/23	M-
Method: EPA Batch ID: V Acenaphth	0.625.1 W3C1531 Jene Jylene	Preparation: EPA 3535/SPE ND		Prepared: 03/ ² 25	17/23 08:20 ng/l			M-
Method: EPA Batch ID: V Acenaphth Acenaphth Anthracene	N3C1531 Hene Hylene	Preparation: EPA 3535/SPE ND ND	5.0	Prepared: 03/7 25 25	17/23 08:20 ng/l ng/l	1	04/14/23	M- M-
Method: EPA Batch ID: V Acenaphth Acenaphth Anthracene	W3C1531 Hene Hylene e anthracene	Preparation: EPA 3535/SPE ND ND ND	5.0 5.5	Prepared: 03/ 25 25 25	17/23 08:20 ng/l ng/l ng/l	1	04/14/23 04/14/23	M- M- M-
Method: EPA Batch ID: V Acenaphth Acenaphth Anthracene Benzo (a) a Benzo (a) p	A 625.1 W3C1531 Ivene Ivylene e anthracene	Preparation: EPA 3535/SPE ND ND ND ND	5.0 5.5 4.6	Prepared: 03/ 25 25 25 25 25	17/23 08:20 ng/l ng/l ng/l ng/l	1 1 1	04/14/23 04/14/23 04/14/23	M- M- M- M-
Method: EPA Batch ID: V Acenaphth Acenaphth Anthracene Benzo (a) a Benzo (b) f	N3C1531 Hene Hylene anthracene pyrene fluoranthene	Preparation: EPA 3535/SPE ND ND ND ND ND	5.0 5.5 4.6 4.8	Prepared: 03/ 25 25 25 25 25 25 25	17/23 08:20 ng/l ng/l ng/l ng/l	1 1 1	04/14/23 04/14/23 04/14/23 04/14/23	M- M- M- M- M-
Method: EPA Batch ID: V Acenaphth Acenaphth Anthracene Benzo (a) a Benzo (b) f Benzo (g,h	A 625.1 W3C1531 Ivene Injlene e anthracene pyrene fluoranthene Injl perylene	Preparation: EPA 3535/SPE ND ND ND ND ND ND ND	5.0 5.5 4.6 4.8 8.0	Prepared: 03/ 25 25 25 25 25 25 25 25	17/23 08:20 ng/l ng/l ng/l ng/l ng/l	1 1 1 1	04/14/23 04/14/23 04/14/23 04/14/23	M- M- M- M- M- M-
Method: EPA Batch ID: V Acenaphth Acenaphth Anthracene Benzo (a) a Benzo (b) f Benzo (g,h Benzo (k) f	N3C1531 W3C1531 Wene uylene e anthracene pyrene fluoranthene fluoranthene fluoranthene	Preparation: EPA 3535/SPE ND ND ND ND ND ND ND ND ND ND ND ND ND	5.0 5.5 4.6 4.8 8.0 5.0	Prepared: 03/ 25 25 25 25 25 25 25 25	17/23 08:20 ng/l ng/l ng/l ng/l ng/l ng/l ng/l	1 1 1 1 1	04/14/23 04/14/23 04/14/23 04/14/23 04/14/23	M- M- M- M- M- M-
Method: EPA Batch ID: V Acenaphth Acenaphth Anthracene Benzo (a) a Benzo (b) f Benzo (g,h Benzo (k) f Chrysene	N3C1531 Hene Hylene e Anthracene pyrene fluoranthene fluoranthene fluoranthene	Preparation: EPA 3535/SPE ND ND ND	5.0 5.5 4.6 4.8 8.0 5.0 6.0 7.0	Prepared: 03/7 25 25 25 25 25 25 25 25 25 25 25 25 25	17/23 08:20 ng/l ng/l ng/l ng/l ng/l ng/l ng/l ng/l	1 1 1 1 1 1 1	04/14/23 04/14/23 04/14/23 04/14/23 04/14/23 04/14/23 04/14/23	M- M- M- M- M- M- M- M-
Method: EPA Batch ID: V Acenaphth Acenaphth Anthracene Benzo (a) a Benzo (b) a Benzo (g,h Benzo (k) f Chrysene Dibenzo (a)	A 625.1 W3C1531 Hene Hylene e Hanthracene Hyrene fluoranthene Huoranthene Huoranthene Huoranthene Huoranthene Huoranthene Huoranthene	Preparation: EPA 3535/SPE ND ND ND	5.0 5.5 4.6 4.8 8.0 5.0 6.0 7.0	Prepared: 03/7 25 25 25 25 25 25 25 25 25 25 25 25 25	17/23 08:20 ng/l ng/l ng/l ng/l ng/l ng/l ng/l ng/l	1 1 1 1 1 1 1 1	04/14/23 04/14/23 04/14/23 04/14/23 04/14/23 04/14/23 04/14/23 04/14/23	M- M- M- M- M- M- M- M-
Method: EPA Batch ID: V Acenaphth Acenaphth Anthracene Benzo (a) a Benzo (b) f Benzo (g,h Benzo (k) f Chrysene Dibenzo (a	A 625.1 W3C1531 Hene Hylene e anthracene Hylene fluoranthene fluoranthene fluoranthene h,i) perylene fluoranthene h,h) anthracene	Preparation: EPA 3535/SPE ND ND ND	5.0 5.5 4.6 4.8 8.0 5.0 6.0 7.0 6.0 7.5	Prepared: 03/7 25 25 25 25 25 25 25 25 25 25 25 25 25	17/23 08:20 ng/l ng/l ng/l ng/l ng/l ng/l ng/l ng/l ng/l	1 1 1 1 1 1 1 1	04/14/23 04/14/23 04/14/23 04/14/23 04/14/23 04/14/23 04/14/23 04/14/23 04/14/23	M- M- M- M- M- M- M- M-
Method: EPA Batch ID: V Acenaphth Acenaphth Anthracene Benzo (a) a Benzo (b) f Benzo (g,h Benzo (k) f Chrysene Dibenzo (a Fluoranthe	A 625.1 W3C1531 Ivene Injlene e Injlene Injlen	Preparation: EPA 3535/SPE ND ND ND	5.0 5.5 4.6 4.8 8.0 5.0 6.0 7.0	Prepared: 03/7 25 25 25 25 25 25 25 25 25 25 25 25 25	17/23 08:20 ng/l ng/l ng/l ng/l ng/l ng/l ng/l ng/l	1 1 1 1 1 1 1 1	04/14/23 04/14/23 04/14/23 04/14/23 04/14/23 04/14/23 04/14/23 04/14/23	Analyst: EF M-

04/14/23

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Reported:

S-11

04/21/2023 15:37

Sample Results

Perylene-d12

(Continued)

Sample:	F_193B_R-2223_W3_01				9	Sampled: 03	/11/23 2:00 by L	uis De La Torre
·	3C10137-01 (Water)					•	•	(Continued)
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
Semivolatile O	Organics - Low Level by Tanden	n GC/MS/MS (Continued)						
Method: EPA	A 625.1			Instr: GCMS15				
Batch ID: \	W3C1531	Preparation: EPA 3535/SPE		Prepared: 03/1	7/23 08:20			Analyst: EFC
Naphthale	ene		16	25	ng/l	1	04/14/23	M-02
Phenanthr	rene	ND	15	25	ng/l	1	04/14/23	M-02
Pyrene		ND	7.0	25	ng/l	1	04/14/23	M-02
Surrogate(s)								
1,3-Dimetl	hyl-2-nitrobenzene	65%	Conc: 324	62-120			04/14/23	

Conc: 171

36-120

Project Manager: Brenda Stevens

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

04/21/2023 15:37

Sample Results

Sample:	F_194B_R-2223_W3_01					Sampled:	03/11/23 2:20 by L	uis De La Torre
	3C10137-02 (Water)							
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
onventional C	Chemistry/Physical Parameters	by APHA/EPA/ASTM Methods						
Method: Calc	culation			Instr: [CALC]				
Batch ID: [C		Preparation: [CALC]		Prepared: 03/2				Analyst: YMT
Nitrogen, T	Total	2.3	0.036	0.20	mg/l	1	03/24/23	
Method: EPA	350.1			Instr: AA06				
Batch ID: W	V3C1631	Preparation: _NONE (WETCHEM)		Prepared: 03/	19/23 09:28			Analyst: HEC
Ammonia a	as N	0.094	0.017	0.10	mg/l	1	03/20/23	
Method: EPA	351.2			Instr: AA06				
Batch ID: W	V3C1819	Preparation: _NONE (WETCHEM)		Prepared: 03/2	21/23 13:00			Analyst: YMT
TKN		0.47	0.13	0.20	mg/l	1	03/24/23	M-02
Method: EPA	353.2			Instr: AA01				
Batch ID: W	V3C1246	Preparation: _NONE (WETCHEM)		Prepared: 03/	14/23 13:24			Analyst: ism
Nitrate as N	N	1.8	0.040	0.20	mg/l	1	03/14/23 16:33	FILT, O-04
Nitrite as N			42	100	ug/l	1	03/14/23 16:33	FILT, O-04
NO2+NO3	as N	1900	36	200	ug/l	1	03/14/23	FILT
exavalent Chi	romium by IC							
Method: EPA	218.6			Instr: LC13				
Batch ID: W	/3C1989	Preparation: _NONE (LC)		Prepared: 03/2	22/23 14:38			Analyst: JAN
Chromium	6+	0.57	0.0079	0.020	ug/l	1	03/22/23	
Chromium	6+, Dissolved	0.56	0.0079	0.020	ug/l	1	03/22/23	O-09, P-6
letals by EPA	200 Series Methods							
Method: EPA	200.7			Instr: ICP03				
Batch ID: W	V3C1904	Preparation: EPA 200.2		Prepared: 03/2	22/23 10:11			Analyst: kvm
Phosphoru	ıs, Dissolved	0.064	0.018	0.050	mg/l	1	03/23/23	
Phosphoru	ıs, Total	0.25	0.018	0.050	mg/l	1	03/23/23	
Method: EPA	200.8			Instr: ICPMS06	5			
Batch ID: W	V3C1908	Preparation: EPA 200.2		Prepared: 03/2	22/23 15:46			Analyst: jol
Aluminum,	, Dissolved	31	4.4	20	ug/l	1	03/23/23	
Aluminum,	, Total	4900	4.4	20	ug/l	1	03/24/23	
Antimony,	Dissolved	0.80	0.089	0.50	ug/l	1	03/23/23	
Antimony,	Total	1.2	0.089	0.50	ug/l	1	03/23/23	
Arsenic, Di	issolved	0.93	0.074	0.40	ug/l	1	03/23/23	
Arsenic, To	otal	2.8	0.074	0.40	ug/l	1	03/23/23	
Beryllium, [Dissolved	ND	0.062	0.10	ug/l	1	03/23/23	
Beryllium,			0.029	0.10	ug/l	1	03/23/23	
Cadmium, I		ND	0.042	0.20	ug/l	1	03/23/23	
Cadmium,	2.000.100	0.092	0.042	0.20	ug/l	1	03/23/23	,
		0.64	0.042	0.20	· ·	1	03/23/23	•
	,			0.20	ug/l	1	03/23/23	
Chromium,	, IUIdI	6.4	0.089	0.20	ug/l	ı	03/23/23	

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

Page 7 of 29

04/21/2023 15:37

3C10137

Sample Results

Sample:	F_194B_R-2223_W3_01					Sampled: 03	3/11/23 2:20 by	Luis De La Torre
	3C10137-02 (Water)							(Continued)
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
etals by EPA	200 Series Methods (Continue	d)						
Method: EPA	A 200.8			Instr: ICPMS06	5			
Batch ID: \		Preparation: EPA 200.2		Prepared: 03/2				Analyst: jol
Copper, D		2.7	0.23	0.50	ug/l	1	03/23/23	
Copper, To			0.23	0.50	ug/l	1	03/23/23	
Iron, Disse	01100	25	3.9	20	ug/l	1	03/23/23	
Iron, Total	•	7200	3.9	20	ug/l	1	03/23/23	
Lead, Diss		0.13	0.083	0.20	ug/l	1	03/23/23	•
Lead, Tota	al	13	0.083	0.20	ug/l	1	03/23/23	
Nickel, Dis	ssolved	0.48	0.16	2.0	ug/l	1	03/23/23	•
Nickel, To	tal ····	4.9	0.40	2.0	ug/l	1	03/23/23	
Selenium,	, Dissolved	0.12	0.067	0.40	ug/l	1	03/23/23	•
Selenium,	, Total	0.20	0.067	0.40	ug/l	1	03/23/23	•
Silver, Diss	solved	ND	0.030	0.20	ug/l	1	03/23/23	
Silver, Tota	al	ND	0.055	0.20	ug/l	1	03/23/23	
Thallium, [Dissolved	ND	0.021	0.20	ug/l	1	03/23/23	
Thallium,	Total	0.039	0.021	0.20	ug/l	1	03/23/23	,
Zinc, Diss	solved	4.9	1.7	10	ug/l	1	03/23/23	
Zinc, Tota	l		1.7	10	ug/l	1	03/23/23	
Method: EPA	Δ 2 <u>4</u> 5 1			Instr: HG03				
Batch ID: \		Preparation: EPA 245.1		Prepared: 03/2	21/23 09:11			Analyst: KVM
Mercury, D		ND	0.037	0.050	ug/l	1	03/22/23	,
Mercury, 1	Total	0.044	0.037	0.050	ug/l	1	03/22/23	,
mivolatile O	Organics - Low Level by Tandem	GC/MS/MS						
Method: EPA	A 625.1			Instr: GCMS15				
Batch ID: \		Preparation: EPA 3535/SPE	6.0	Prepared: 03/		1	04/14/23	Analyst: EFC
Acenaphth		2		25	ng/l			M-02
Acenaphth	.,,	ND ND	5.0	25	ng/l	1	04/14/23	M-02
A 41	le	ND	5.5	25	ng/l	1	04/14/23	M-02
Anthracen		ND	4.6	25	ng/l	1	04/14/23	M-02
Benzo (a)	anthracene					1	04/14/23	M-02
Benzo (a) Benzo (a)	pyrene	ND	4.8	25	ng/l			
Benzo (a) Benzo (b)	pyrene fluoranthene	ND ND	8.0	25	ng/l	1	04/14/23	
Benzo (a) Benzo (b)	pyrene fluoranthene	ND	8.0 5.0		_			M-02
Benzo (a) Benzo (b) Benzo (g,h	pyrene fluoranthene h,i) perylene	ND ND	8.0	25	ng/l	1	04/14/23	M-0
Benzo (a) Benzo (b) Benzo (g,h	pyrene fluoranthene h,i) perylene fluoranthene	ND ND ND	8.0 5.0	25 25	ng/l ng/l	1 1	04/14/23 04/14/23	M-02
Benzo (a) Benzo (b) Benzo (g,r Benzo (k) Chrysene	pyrene fluoranthene h,i) perylene fluoranthene	ND ND ND ND	8.0 5.0 6.0	25 25 25	ng/l ng/l ng/l	1 1 1	04/14/23 04/14/23 04/14/23	M-0: M-0: M-0:
Benzo (a) Benzo (b) Benzo (g,r Benzo (k) Chrysene	pyrene fluoranthene h,i) perylene fluoranthene a,h) anthracene	ND ND ND ND ND	8.0 5.0 6.0 7.0	25 25 25 25	ng/l ng/l ng/l ng/l	1 1 1	04/14/23 04/14/23 04/14/23 04/14/23	M-02 M-02 M-02 M-02 M-02
Benzo (a) Benzo (b) Benzo (g,h Benzo (k) Chrysene Dibenzo (a)	pyrene fluoranthene h,i) perylene fluoranthene a,h) anthracene	ND ND ND ND ND ND ND	8.0 5.0 6.0 7.0 6.0	25 25 25 25 25 25	ng/l ng/l ng/l ng/l	1 1 1 1	04/14/23 04/14/23 04/14/23 04/14/23	M-02 M-02 M-02

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Reported:

04/21/2023 15:37

Sample Results

Project Manager: Brenda Stevens

Sample:	F_194B_R-2223_W3_01				Ç	Sampled: 03	3/11/23 2:20 by	Luis De La Torre	
	3C10137-02 (Water)							(Continued)	
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifier	
Semivolatile O	rganics - Low Level by Tandem G	iC/MS/MS (Continued)							
Method: EPA	625.1			Instr: GCMS15					
Batch ID: V	V3C1531	Preparation: EPA 3535/SPE	5/SPE Prepared: 03/17/23 08:20						
Naphthale	ne	32	16	25	ng/l	1	04/14/23	M-02	
Phenanthre	ene	ND	15	25	ng/l	1	04/14/23	M-02	
Pyrene		ND	7.0	25	ng/l	1	04/14/23	M-02	
Surrogate(s)									
1,3-Dimeth	nyl-2-nitrobenzene	62%	Conc: 309	62-120			04/14/23		
Perylene-a	112	36%	Conc: 178	36-120			04/14/23		

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

04/21/2023 15:37

3

Sample Results

Sample: ARCAD_WA_CON_2223_	VV 3_U I				sampled:	03/11/23 2:00 by L	uis De La Torr
3C10137-03 (Water)							
Analyte	Result	MDL	MRL	Units	Dil	Analyzed	Qualifi
onventional Chemistry/Physical Paramet	ers by APHA/EPA/ASTM Methods						
Method: Calculation			Instr: [CALC]				
Batch ID: [CALC]	Preparation: [CALC]		Prepared: 03/2	21/23 13:00			Analyst: YM
Nitrogen, Total	1.9	0.036	0.20	mg/l	1	03/24/23	
Method: EPA 350.1			Instr: AA06				
Batch ID: W3C1631	Preparation: _NONE (WETCHEM)		Prepared: 03/1	19/23 09:28			Analyst: HE
Ammonia as N	0.054	0.017	0.10	mg/l	1	03/20/23	
Method: EPA 351.2			Instr: AA06				
Batch ID: W3C1819	Preparation: _NONE (WETCHEM)		Prepared: 03/2	21/23 13:00			Analyst: YM
TKN	0.39	0.13	0.20	mg/l	1	03/24/23	M-0
Method: EPA 353.2			Instr: AA01				
Batch ID: W3C1246	Preparation: _NONE (WETCHEM)		Prepared: 03/1	14/23 13:24			Analyst: isr
Nitrate as N	1.4	0.040	0.20	mg/l	1	03/14/23 16:38	FILT, O-0
Nitrite as N	ND	42	100	ug/l	1	03/14/23 16:38	FILT, O-0
NO2+NO3 as N	1500	36	200	ug/l	1	03/14/23	FIL
exavalent Chromium by IC							
Method: EPA 218.6			Instr: LC13				
Batch ID: W3C1989	Preparation: _NONE (LC)		Prepared: 03/2	22/23 14:38			Analyst: JAN
Chromium 6+	0.37	0.0079	0.020	ug/l	1	03/22/23	
Chromium 6+, Dissolved	0.41	0.0079	0.020	ug/l	1	03/22/23	O-09, P-
letals by EPA 200 Series Methods							
Method: EPA 200.7			Instr: ICP03				
Batch ID: W3C1904	Preparation: EPA 200.2		Prepared: 03/2	22/23 10:11			Analyst: kvn
Phosphorus, Dissolved	0.035	0.018	0.050	mg/l	1	03/23/23	
Phosphorus, Total	0.092	0.018	0.050	mg/l	1	03/23/23	
Method: EPA 200.8			Instr: ICPMS06	i			
Batch ID: W3C1908	Preparation: EPA 200.2		Prepared: 03/2				Analyst: jo
Aluminum, Dissolved		4.4	20	ug/l	1	03/23/23	• •
Aluminum, Total	950	4.4	20	ug/l	1	03/24/23	
Antimony, Dissolved	0.51	0.089	0.50	ug/l	1	03/23/23	
Antimony, Total	0.71	0.089	0.50	ug/l	1	03/23/23	
Arsenic, Dissolved	0.81	0.074	0.40	ug/l	1	03/23/23	
Arsenic, Total	1.1	0.074	0.40	ug/l	1	03/23/23	
Beryllium, Dissolved	ND	0.062	0.10	ug/l	1	03/23/23	
Beryllium, Total	ND	0.029	0.10	ug/l	1	03/23/23	
•	ND	0.042	0.20	ug/l	1	03/23/23	
,	ND	0.042	0.20	ug/l	1	03/23/23	
,	0.49	0.089	0.20	ug/l	1	03/23/23	
,	1.7	0.089	0.20	ug/l	1	03/23/23	
Jin Jilliulli, IUlai	1./	0.000	0.20	ug/i		00/20/20	

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

04/21/2023 15:37

Sample Results

Sample:	ARCAD_WA_CON_2223_W3	3_01				Sampled: 03	3/11/23 2:00 by	Luis De La Torr
	3C10137-03 (Water)							(Continued
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
etals by EP/	A 200 Series Methods (Continue	d)						
Method: EP/	A 200.8			Instr: ICPMS06	5			
Batch ID:	W3C1908	Preparation: EPA 200.2		Prepared: 03/2	22/23 15:46			Analyst: jo
Copper, D	Dissolved	2.5	0.23	0.50	ug/l	1	03/23/23	
Copper, T	otal	5.2	0.23	0.50	ug/l	1	03/23/23	
Iron, Diss	solved		3.9	20	ug/l	1	03/23/23	
Iron, Tota	l	1100	3.9	20	ug/l	1	03/23/23	
Lead, Diss	solved	ND	0.083	0.20	ug/l	1	03/23/23	
Lead, Tota	al	2.2	0.083	0.20	ug/l	1	03/23/23	
Nickel, Di	ssolved	0.31	0.16	2.0	ug/l	1	03/23/23	
Nickel, To	otal	1.3	0.40	2.0	ug/l	1	03/23/23	
Selenium	, Dissolved	0.11	0.067	0.40	ug/l	1	03/23/23	
Selenium	, Total	0.098	0.067	0.40	ug/l	1	03/23/23	
Silver, Dis	ssolved	ND	0.030	0.20	ug/l	1	03/23/23	
Silver, Tota	al	ND	0.055	0.20	ug/l	1	03/23/23	
Thallium,	Dissolved	ND	0.021	0.20	ug/l	1	03/23/23	
Thallium,	Total	ND	0.021	0.20	ug/l	1	03/23/23	
Zinc, Diss		8.3	1.7	10	ug/l	1	03/23/23	
Zinc, Tota			1.7	10	ug/l	1	03/23/23	
1ethod: EPA	A 245.1			Instr: HG03				
Batch ID:		Preparation: EPA 245.1		Prepared: 03/2	21/23 09:11			Analyst: KV
Mercury, 7	Total		0.037	0.050	ug/l	1	03/22/23	•
lethod: EP/	A 245.1			Instr: HG03				
Batch ID:	W3C1950	Preparation: EPA 245.1		Prepared: 03/2	22/23 12:46			Analyst: KV
Mercury, [Dissolved	ND	0.037	0.050	ug/l	1	03/23/23	
nivolatile (Organics - Low Level by Tandem	GC/MS/MS						
lethod: EPA	A 625.1			Instr: GCMS15	;			
Batch ID:		Preparation: EPA 3535/SPE		Prepared: 03/				Analyst: Ef
Acenaphtl		ND	6.0	25	ng/l	1	04/14/23	M-
Acenaphtl	,	ND	5.0	25	ng/l	1	04/14/23	M-
Anthracen	.5	ND	5.5	25	ng/l	1	04/14/23	M-
Benzo (a)	anthracene	ND	4.6	25	ng/l	1	04/14/23	M-
Benzo (a)	pyrene	ND	4.8	25	ng/l	1	04/14/23	M-
Benzo (b)	fluoranthene	ND	8.0	25	ng/l	1	04/14/23	M-
Benzo (g,	h,i) perylene	ND	5.0	25	ng/l	1	04/14/23	M-
Benzo (k)	fluoranthene	ND	6.0	25	ng/l	1	04/14/23	M-
Chrysene		ND	7.0	25	ng/l	1	04/14/23	M-
Dibenzo (a,h) anthracene	ND	6.0	25	ng/l	1	04/14/23	M-
Fluoranthe	ene	ND	7.5	25	ng/l	1	04/14/23	M-
10137								Page 10

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

04/21/2023 15:37

9

Method: SM 2540C

Method: SM 2540D

Batch ID: W3C1445

Batch ID: W3C1435

Total Dissolved Solids

Total Suspended Solids

Sample Results

(Continued)

Analyst: bel

Analyst: mes

03/16/23

03/16/23

3_01 Sample	led: 03/11/23 2:00 by Luis De La Torr
	(Continued
Result MDL MRL Units D	Dil Analyzed Qualific
n GC/MS/MS (Continued)	
Instr: GCMS15	
Preparation: EPA 3535/SPE Prepared: 03/17/23 08:20	Analyst: EFG
, and the second se	1 04/14/23 M-0
	1 04/14/23 M-0
ND 16 25 ng/l	1 04/14/23 M-0
ND 15 25 ng/l	1 04/14/23 M-0
ND 7.0 25 ng/l	1 04/14/23 M-0
75% Conc: 374 62-120	04/14/23
45% Conc: 223 36-120	04/14/23
45% Conc: 223 36-120	
43% CONC: 223 30-120	(Continued
	(Continued ed: 03/10/23 15:45 by Luis De La Torr
Sample	
Sample	ed: 03/10/23 15:45 by Luis De La Torr
Sample Result MDL MRL Units D	ed: 03/10/23 15:45 by Luis De La Torr
Sample Result MDL MRL Units D s by APHA/EPA/ASTM Methods	ed: 03/10/23 15:45 by Luis De La Torr
Result MDL MRL Units D s by APHA/EPA/ASTM Methods Instr: OVEN17 Preparation: _NONE (WETCHEM) Prepared: 03/16/23 09:25	ed: 03/10/23 15:45 by Luis De La Torr
Sample Result MDL MRL Units D s by APHA/EPA/ASTM Methods Instr: OVEN17 Preparation: _NONE (WETCHEM) Prepared: 03/16/23 09:25	ed: 03/10/23 15:45 by Luis De La Torr Dil Analyzed Qualific Analyst: be
Result MDL MRL Units D	ed: 03/10/23 15:45 by Luis De La Torr Dil Analyzed Qualific Analyst: be
Result MDL MRL Units D	ed: 03/10/23 15:45 by Luis De La Torr Dil Analyzed Qualifie Analyst: be 1 03/16/23
Result MDL MRL Units D	ed: 03/10/23 15:45 by Luis De La Torr Dil Analyzed Qualifie Analyst: be 1 03/16/23 Analyst: me
Result MDL MRL Units DESTINATION DESTINATION	ed: 03/10/23 15:45 by Luis De La Torr Dil Analyzed Qualific Analyst: be 1 03/16/23 Analyst: me 1 03/16/23
Result MDL MRL Units DESTINATION DESTINATION	ed: 03/10/23 15:45 by Luis De La Torr Dil Analyzed Qualifie Analyst: be 1 03/16/23 Analyst: me 1 03/16/23 (Continued

3C10137 Page 11 of 29

Preparation: _NONE (WETCHEM)

Preparation: _NONE (WETCHEM)

4.0

72

350

Instr: OVEN17

10

Instr: OVEN15

Prepared: 03/16/23 09:25

Prepared: 03/16/23 09:50

mg/l

mg/l

03/23/23

03/23/23

03/23/23

Analyst: kvm

M-02

M-02

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123

Hardness as CaCO3, Total

Method: EPA 200.7

Calcium, Total

Batch ID: W3C1904

Magnesium, Total

Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

04/21/2023 15:37

7		1	
		N	(
			v
		7	

Sample Results

(Continued)

Sample:	ARCAD_WA_CON_2223_W3	_01					Sampled: 03	/10/23 15:00 b ₂	/ Luis De La Toi
	3C10137-06 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualif
onventional	Chemistry/Physical Parameters	by APHA/EPA/ASTM Methods							
Method: SM	1 2540C				Instr: OVEN17				
Batch ID:	W3C1435	Preparation: _NONE (WETCHEM)		Prepared: 03/1	16/23 09:25			Analyst: b
Total Diss	olved Solids		60	4.0	10	mg/l	1	03/16/23	
Method: SM	I 2540D				Instr: OVEN15				
Batch ID:	W3C1445	Preparation: _NONE (WETCHEM)		Prepared: 03/1	16/23 09:50			Analyst: m
Total Sus	pended Solids		- 32		5	mg/l	1	03/16/23	
Sa	ample Results								(Continue
Sample:	ARCAD_WA_CON_2223_W3	_02					Sampled: 03	/10/23 15:00 b _!	/ Luis De La Toı
	3C10137-07 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualif
onventional	Chemistry/Physical Parameters	by APHA/EPA/ASTM Methods							
Method: SM	1 2540C				Instr: OVEN17				
Batch ID:	W3C1435	Preparation: _NONE (WETCHEM)		Prepared: 03/1	16/23 09:25			Analyst: b
Total Diss	solved Solids		63	4.0	10	mg/l	1	03/16/23	
Method: SM	1 2540D				Instr: OVEN15				
Batch ID:	W3C1445	Preparation: _NONE (WETCHEM)		Prepared: 03/1	16/23 09:50			Analyst: me
Total Sus	pended Solids		- 32		5	mg/l	1	03/16/23	
Sa	ample Results								(Continue
Sample:	F-193B-R_2223_W3_01						Sampled: 03	/10/23 15:45 b ₂	/ Luis De La Tor
	3C10137-08 (Water)								
Analyte	,		Result	MDL	MRL	Units	Dil	Analyzed	Qualif
letals by EPA	200 Series Methods								
Method: Cal	culation				Instr: [CALC]				
Batch ID:	[CALC]	Preparation: [CALC]			Prepared: 03/2	22/23 10:11			Analyst: kvi

50.8

32.0

0.689

0.147

0.0780

Preparation: EPA 200.2

6.62

1.00

1.00

Prepared: 03/22/23 10:11

Instr: ICP03

mg/l

mg/l

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

04/21/2023 15:37

	 _	
	M	
		Sar
		O ai

Sample Results

(Continued)

Sample:	F-194B-R_2223_W3_01						Sampled: 03	3/10/23 16:10 b	y Luis De La Torre
	3C10137-09 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
letals by EPA	200 Series Methods								
Method: Calc	culation				Instr: [CALC]				
Batch ID: [0	CALC]	Preparation: [CALC]			Prepared: 03/2	22/23 10:11			Analyst: kvm
Hardness	as CaCO3, Total		78.6	0.344	3.31	mg/l	1	03/23/23	
Method: EPA	200.7				Instr: ICP03				
Batch ID: V	V3C1904	Preparation: EPA 200.2			Prepared: 03/2	22/23 10:11			Analyst: kvm
Calcium, T	otal		18.6	0.0736	0.500	mg/l	1	03/23/23	
Magnesiur	n, Total		7.77	0.0390	0.500	mg/l	1	03/23/23	
Sa	mple Results								(Continued
Sample:	ARCAD_WA_CON_2223_W3_	01					Sampled: 03	3/10/23 15:00 b	y Luis De La Torr
	3C10137-10 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
Metals by EPA	200 Series Methods								
Method: Calc	culation				Instr: [CALC]				
Batch ID: [0	CALC]	Preparation: [CALC]			Prepared: 03/2	22/23 10:11			Analyst: kvm
Hardness	as CaCO3, Total		46.2	0.344	3.31	mg/l	1	03/23/23	
Method: EPA	200.7				Instr: ICP03				
Batch ID: V	V3C1904	Preparation: EPA 200.2			Prepared: 03/2	22/23 10:11			Analyst: kvm
Calcium, T	otal		12.7	0.0736	0.500	mg/l	1	03/23/23	
Magnesiur	n, Total		3.51	0.0390	0.500	mg/l	1	03/23/23	
Sa	mple Results								(Continued
Sample:	ARCAD_WA_CON_2223_W3_	02					Sampled: 03	2/10/23 15:00 b	Luis De La Torr

3C10137-11 (Water)								
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
Metals by EPA 200 Series Methods								
Method: Calculation				Instr: [CALC]				
Batch ID: [CALC]	Preparation: [CALC]			Prepared: 03/2	2/23 10:11			Analyst: kvm
Hardness as CaCO3, Total		46.9	0.344	3.31	mg/l	1	03/23/23	
Method: EPA 200.7				Instr: ICP03				
Batch ID: W3C1904	Preparation: EPA 200.2			Prepared: 03/2	2/23 10:11			Analyst: kvm
Calcium, Total		12.9	0.0736	0.500	mg/l	1	03/23/23	
Magnesium, Total		3.54	0.0390	0.500	mg/l	1	03/23/23	

3C10137 Page 13 of 29

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123

Sample:

Project Number: SGVCOG Fire Effects Study

Reported:

04/21/2023 15:37

Sample Results Enthalpy Orange

F_193B_R-2223_W3_01

Sampled: 03/11/23 2:00 by Luis De La Torre

3C10137-01 (Water)

MDL MRL Units Dil Analyzed Qualifier Analyte SM 10200-H Batch ID: 310182 Analyst: ATP Method: Chlorophyll Prepared: 03/12/23 11:50 03/21/23 1.0 mg/M3 Chlorophyll a

Result

Project Manager: Brenda Stevens

3C10137 Page 14 of 29

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A

Project Number: SGVCOG Fire Effects Study

Reported:

04/21/2023 15:37

San Diego, CA 92123

Sample Results Enthalpy Orange

(Continued)

	-							
Sample:	F_194B_R-2223_W3_01 3C10137-02 (Water)				:	Sampled: 03,	/11/23 2:20 by L	uis De La Torre
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
SM 10200-H								
Method: Chlo	orophyll	Batch ID: 310182		Prepared: 03/	12/23 12:19			Analyst: ATP
Chlorophyl	la	ND		1.0	mg/M3	1	03/21/23	ND

Project Manager: Brenda Stevens

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Reported:

04/21/2023 15:37

Sample

Sample Results Enthalpy Orange

(Continued)

Sample:	ARCAD_WA_CON_2223_W3_01				S	Sampled: 03	/11/23 2:00 by L	uis De La Torre
	3C10137-03 (Water)							
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
SM 10200-H								
Method: Chlo	orophyll	Batch ID: 310182		Prepared: 02/	12/23 13:04			Analyst: ATP
Chlorophyl	II a	ND		1.0	mg/M3	1	03/21/23	ND

Project Manager: Brenda Stevens

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

04/21/2023 15:37

Conventional Chemistry/Physical Parameters by APHA/I	EPA/AST	M Methods									
Analyte	Result	MDL	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
atch: W3C1246 - EPA 353.2											
Blank (W3C1246-BLK1)					Prepared & A	nalyzed: 03/	14/23				
Nitrate as N	ND	0.040	0.15	mg/l							
Nitrite as N	ND	42	100	ug/l							
NO2+NO3 as N	ND	36	200	ug/l							
LCS (W3C1246-BS1)					Prepared & A	nalyzed: 03/	14/23				
Nitrate as N	1.00	0.040	0.15	mg/l	1.00	•	100	90-110			
Nitrite as N	952	42	100	ug/l	1000		95	90-110			
NO2+NO3 as N	1000	36	200	ug/l	1000		100	90-110			
Matrix Spike (W3C1246-MS1)	ource: 3	C10012-02			Prepared & A	nalyzed: 03/	14/23				
Nitrate as N	9.66	0.040	0.15	mg/l	2.00	7.78	94	90-110			
Nitrite as N	- 937	42	100	ug/l	1000	ND	94	90-110			
NO2+NO3 as N	9660	36	200	ug/l	2000	7780	94	90-110			
Matrix Spike (W3C1246-MS2)	ource: 3	C13046-07			Prepared & A	nalvzed: 03/	14/23				
Nitrate as N		0.040	0.15	mg/l	2.00	3.31	96	90-110			
Nitrite as N	923	42	100	ug/l	1000	ND	92	90-110			
NO2+NO3 as N	5240	36	200	ug/l	2000	3310	96	90-110			
Matrix Spike Dup (W3C1246-MSD1) S	ource: 3	C10012-02			Prepared & A	nalvzed: 03/	14/23				
Nitrate as N	9.63	0.040	0.15	mg/l	2.00	7.78	92	90-110	0.3	20	
Nitrite as N	- 950	42	100	ug/l	1000	ND	95	90-110	1	20	
NO2+NO3 as N	9630	36	200	ug/l	2000	7780	92	90-110	0.3	20	
Matrix Spike Dup (W3C1246-MSD2)	ource: 3	C13046-07			Prepared & A	nalyzed: 03/	14/23				
Nitrate as N	5.24	0.040	0.15	mg/l	2.00	3.31	96	90-110	0	20	
Nitrite as N	- 942	42	100	ug/l	1000	ND	94	90-110	2	20	
NO2+NO3 as N	5240	36	200	ug/l	2000	3310	96	90-110	0	20	
atch: W3C1435 - SM 2540C											
Blank (W3C1435-BLK1)					Prepared & A	nalyzed: 03/	16/23				
Total Dissolved Solids	ND	4.0	10	mg/l							
LCS (W3C1435-BS1)					Prepared & A	nalvzed: 03/	16/23				
Total Dissolved Solids	816	4.0	10	mg/l	824		99	97-103			
Duplicate (W3C1435-DUP1) S	ource: 3	C10032-09			Prepared & A	nalyzed: 03/	16/23				
Total Dissolved Solids	9470	4.0	10	mg/l		9370			1	10	
Duplicate (W3C1435-DUP2)	ource: 3	C10032-06			Prepared & A	nalyzed: 03/	16/23				
Total Dissolved Solids	9170	4.0	10	mg/l		9230			0.7	10	
atch: W3C1445 - SM 2540D											
Blank (W3C1445-BLK1)					Prepared & A	nalyzed: 03/	16/23				
Total Suspended Solids	ND		5	mg/l							
LCS (W3C1445-BS1)					Prepared & A	nalyzed: 03/	16/23				
Total Suspended Solids	- 60.0		5	mg/l	62.3		96	90-110			
Duplicate (W3C1445-DUP1)	ource: 3	C13076-05			Prepared & A	nalyzed: 03/	16/23				
C10137											Page 17 of

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

04/21/2023 15:37

Quality Control Results

Conventional Chemistry/Physical Parameters	by APHA/EPA/AST	M Methods	(Continue	d)							
Analyte	Result	MDL	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
atch: W3C1445 - SM 2540D (Continued)	Result	IVIDE	IVINL	Omes	Level	Result	AUTEC	Lilling	KI D	Lilling	Quanne
Duplicate (W3C1445-DUP1)	Source: 30	13076-05			Prepared & An	alvzed: 03/	16/23				
Total Suspended Solids	44.8	213070 03	5	mg/l	r repared & Air	42.0	10,23		6	10	
Duplicate (W3C1445-DUP2)	Source: 30	C14018-01			Prepared & An	alyzed: 03/	16/23				
Total Suspended Solids	90.7		5	mg/l		99.3			9	10	
atch: W3C1631 - EPA 350.1											
Blank (W3C1631-BLK1)				Pre	epared: 03/19/23	Analyzed:	03/20/23				
Ammonia as N	ND	0.017	0.10	mg/l							
Blank (W3C1631-BLK2)				Pre	epared: 03/19/23	Analyzed:	03/20/23				
Ammonia as N	ND	0.017	0.10	mg/l	•	,					
LCS (W3C1631-BS1)				Pre	epared: 03/19/23	Analyzed:	03/20/23				
Ammonia as N	0.261	0.017	0.10	mg/l	0.250	,	104	90-110			
LCS (W3C1631-BS2)				Pre	epared: 03/19/23	Analyzed:	03/20/23				
Ammonia as N	0.261	0.017	0.10	mg/l	0.250	7 mary 2 ca.	104	90-110			
Matrix Spike (W3C1631-MS1)	Source: 30	14015-01		Pre	epared: 03/19/23	Analyzed:	03/20/23				
Ammonia as N		0.017	0.10	mg/l	0.250	ND	107	90-110			
Matrix Spike (W3C1631-MS2)	Source: 30	C14094-01		Pre	epared: 03/19/23	Analyzed:	03/20/23				
Ammonia as N		0.017	0.10	mg/l	0.250	0.0599	102	90-110			
Matrix Spike Dup (W3C1631-MSD1)	Source: 30	C14015-01		Pre	epared: 03/19/23	Analyzed:	03/20/23				
Ammonia as N		0.017	0.10	mg/l	0.250	ND	107	90-110	0.05	15	
Matrix Spike Dup (W3C1631-MSD2)	Source: 30	14094-01		Pre	epared: 03/19/23	Analyzed:	03/20/23				
Ammonia as N	0.315	0.017	0.10	mg/l	0.250	0.0599	102	90-110	0.07	15	
atch: W3C1819 - EPA 351.2											
Blank (W3C1819-BLK1)				Pre	epared: 03/21/23	Analyzed:	03/24/23				
TKN	· ND	0.065	0.10	mg/l							
Blank (W3C1819-BLK2)				Pre	epared: 03/21/23	Analyzed:	03/24/23				
TKN	ND	0.065	0.10	mg/l							
LCS (W3C1819-BS1)				Pre	epared: 03/21/23	Analyzed:	03/24/23				
TKN	1.02	0.065	0.10	mg/l	1.00	•	102	90-110			
LCS (W3C1819-BS2)				Pre	epared: 03/21/23	Analyzed:	03/24/23				
TKN	1.03	0.065	0.10	mg/l	1.00	,	103	90-110			
Matrix Spike (W3C1819-MS1)	Source: 30	C14094-01		Pre	epared: 03/21/23	Analyzed:	03/24/23				
TKN		0.065	0.10	mg/l	1.00	0.0881	100				
Matrix Spike (W3C1819-MS2)	Source: 30	C16114-01		Pre	epared: 03/21/23	Analyzed:	03/24/23				
TKN		0.065	0.10	mg/l	1.00	0.355	100	90-110			
Matrix Spike Dup (W3C1819-MSD1)	Source: 30	C14094-01		Pre	epared: 03/21/23	Analyzed:	03/24/23				
TKN			0.10	mg/l	1.00	0.0881	97		2	10	
Matrix Spike Dup (W3C1819-MSD2)	Source: 36	C16114-01		Dec	epared: 03/21/23	Analyzod.	03/24/23				
TKN	1.44	0.065	0.10	mg/l	1.00	0.355	108	90-110	6	10	

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

04/21/2023 15:37

Quality Control Results

/A/M/										
Hexavalent Chromium by IC										
				Spike	Source		%REC		RPD	
Analyte Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
Batch: W3C1989 - EPA 218.6										
Blank (W3C1989-BLK1)				Prepared & A	nalyzed: 03/2	2/23				
Chromium 6+	0.0079	0.020	ug/l							
Chromium 6+, Dissolved ND	0.0079	0.020	ug/l							
LCS (W3C1989-BS1)				Prepared & A	nalyzed: 03/2	2/23				
Chromium 6+ 4.98	0.0079	0.020	ug/l	5.00		100	90-110			
Chromium 6+, Dissolved 4.98	0.0079	0.020	ug/l	5.00		100	90-110			
Matrix Spike (W3C1989-MS1) Source:	3C10137-01			Prepared & A	nalyzed: 03/2	2/23				
Chromium 6+ 5.52	0.0079	0.020	ug/l	5.00	0.465	101	88-112			
Chromium 6+, Dissolved 5.52	0.0079	0.020	ug/l	5.00	0.459	101	88-112			
Matrix Spike (W3C1989-MS2) Source:	3C10137-02			Prepared & A	nalyzed: 03/2	2/23				
Chromium 6+ 5.69	0.0079	0.020	ug/l	5.00	0.571	102	88-112			
Chromium 6+, Dissolved 5.69	0.0079	0.020	ug/l	5.00	0.563	103	88-112			
Matrix Spike Dup (W3C1989-MSD1) Source:	3C10137-01			Prepared & A	nalyzed: 03/2	2/23				
Chromium 6+ 5.71	0.0079	0.020	ug/l	5.00	0.465	105	88-112	3	10	
Chromium 6+, Dissolved 5.71	0.0079	0.020	ug/l	5.00	0.459	105	88-112	3	10	
	3C10137-02			Prepared & A	nalyzed: 03/2	2/23				
Chromium 6+ 5.69	0.0079	0.020	ug/l	5.00	0.571	102	88-112	0.1	10	
Chromium 6+, Dissolved 5.69	0.0079	0.020	ug/l	5.00	0.563	102	88-112	0.1	10	

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

04/21/2023 15:37

Quality Control Results

Metals by EPA 200 Series Methods											
Analyte	Result	MDL	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
atch: W3C1735 - EPA 245.1											4
Blank (W3C1735-BLK1)				Pre	pared: 03/21/2	3 Analyzed:	03/22/23	3			
Mercury, Dissolved	ND	0.037	0.050	ug/l		, ,					
Mercury, Total	ND	0.037	0.050	ug/l							
LCS (W3C1735-BS1)				Pre	pared: 03/21/2	3 Analyzed:	03/22/23	3			
Mercury, Dissolved	- 1.14	0.037	0.050	ug/l	1.00		114	85-115			
Mercury, Total	- 1.14	0.037	0.050	ug/l	1.00		114	85-115			
Matrix Spike (W3C1735-MS1)	ource: 3	C10137-01		Pre	pared: 03/21/2	3 Analyzed:	03/22/23	3			
Mercury, Dissolved	1.07	0.037	0.050	ug/l	1.00	ND	107	70-130			
Mercury, Total	- 1.07	0.037	0.050	ug/l	1.00	ND	107	70-130			
		C10137-03		Pre	pared: 03/21/2	•					
Mercury, Total	- 1.11	0.037	0.050	ug/l	1.00	ND	111	70-130			
Matrix Spike Dup (W3C1735-MSD1)	ource: 3	C10137-01		Pre	pared: 03/21/2	3 Analyzed:	03/22/23	3			
Mercury, Dissolved	- 1.21	0.037	0.050	ug/l	1.00	ND	121	70-130	12	20	
Mercury, Total	- 1.21	0.037	0.050	ug/l	1.00	ND	121	70-130	12	20	
Matrix Spike Dup (W3C1735-MSD2)	ource: 3	C10137-03		Pre	pared: 03/21/2	3 Analyzed:	03/22/23	3			
Mercury, Total	1.04	0.037	0.050	ug/l	1.00	ND	104	70-130	7	20	
atch: W3C1904 - EPA 200.7											
Blank (W3C1904-BLK1)				Pre	pared: 03/22/2	3 Analyzed:	03/23/23	3			
Calcium, Total		0.0736	0.500	mg/l							
Magnesium, Total		0.0390	0.500	mg/l							
Phosphorus, Dissolved		0.018	0.050	mg/l							
Phosphorus, Total	·ND	0.018	0.050	mg/l							
LCS (W3C1904-BS1)				Pre	pared: 03/22/2	3 Analyzed:	03/23/23				
Calcium, Total	- 48.1	0.0736	0.500	mg/l	50.2		96	85-115			
Magnesium, Total	47.5	0.0390	0.500	mg/l	50.2		95	85-115			
Phosphorus, Dissolved	2.14	0.018	0.050	mg/l	2.00		107	85-115			
Phosphorus, Total	2.14	0.018	0.050	mg/l	2.00		107	85-115			
Matrix Spike (W3C1904-MS1)	ource: 3	C13103-01		Pre	pared: 03/22/2	3 Analyzed:	03/23/23	3			
Calcium, Total	114	0.0736	0.500	mg/l	50.2	67.6	92	70-130			
Magnesium, Total	- 67.5	0.0390	0.500	mg/l	50.2	19.9	95	70-130			
Phosphorus, Dissolved	- 17.1	0.018	0.050	mg/l	2.00	14.9	111	70-130			
Phosphorus, Total	- 17.1	0.018	0.050	mg/l	2.00	14.9	111	70-130			
Matrix Spike (W3C1904-MS2)	ource: 3	C15130-01		Pre	pared: 03/22/2	3 Analyzed:	03/23/23	3			
Calcium, Total	49.5	0.0736	0.500	mg/l	50.2	1.51	96	70-130			
Magnesium, Total	47.5	0.0390	0.500	mg/l	50.2	0.142	95	70-130			
Phosphorus, Dissolved	2.16	0.018	0.050	mg/l	2.00	0.0220	107	70-130			
Phosphorus, Total	- 2.16	0.018	0.050	mg/l	2.00	0.0220	107	70-130			
Matrix Spike Dup (W3C1904-MSD1) S	ource: 3	C13103-01		Pre	pared: 03/22/2	3 Analyzed:	03/23/23	3			
Calcium, Total		0.0736	0.500	mg/l	50.2	67.6	88	70-130	2	30	

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

04/21/2023 15:37

Quality Control Results

Metals by EPA 200 Series Methods (Continued)											
Analyte	Result	MDL	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
Batch: W3C1904 - EPA 200.7 (Continued)											•
Matrix Spike Dup (W3C1904-MSD1)	ource: 3	C13103-01		Prej	pared: 03/22/	23 Analyzed:	03/23/2	3			
Magnesium, Total	- 66.3	0.0390	0.500	mg/l	50.2	19.9	93	70-130	2	30	
Phosphorus, Dissolved	- 16.8	0.018	0.050	mg/l	2.00	14.9	94	70-130	2	30	
Phosphorus, Total	- 16.8	0.018	0.050	mg/l	2.00	14.9	94	70-130	2	30	
Matrix Spike Dup (W3C1904-MSD2)	ource: 3	C15130-01		Pre	pared: 03/22/	23 Analyzed:	03/23/2	3			
Calcium, Total	49.5	0.0736	0.500	mg/l	50.2	1.51	96	70-130	0.02	30	
Magnesium, Total	47.5	0.0390	0.500	mg/l	50.2	0.142	94	70-130	0.07	30	
Phosphorus, Dissolved	- 2.16	0.018	0.050	mg/l	2.00	0.0220	107	70-130	0.009	30	
Phosphorus, Total	- 2.16	0.018	0.050	mg/l	2.00	0.0220	107	70-130	0.009	30	
Batch: W3C1908 - EPA 200.8											
Blank (W3C1908-BLK1)				Pre	pared: 03/22/	23 Analyzed:	03/23/2	3			
Aluminum, Dissolved	ND	4.4	20	ug/l							
Aluminum, Total	ND	4.4	20	ug/l							
Antimony, Dissolved	ND	0.089	0.50	ug/l							
Antimony, Total	ND	0.089	0.50	ug/l							
Arsenic, Dissolved	· ND	0.074	0.40	ug/l							
Arsenic, Total	ND	0.074	0.40	ug/l							
Beryllium, Dissolved	ND	0.062	0.10	ug/l							
Beryllium, Total	ND	0.029	0.10	ug/l							
Cadmium, Dissolved	ND	0.042	0.20	ug/l							
Cadmium, Total	ND	0.042	0.20	ug/l							
Chromium, Dissolved	ND	0.089	0.20	ug/l							
Chromium, Total	ND	0.089	0.20	ug/l							
Copper, Dissolved	ND	0.23	0.50	ug/l							
Copper, Total	ND	0.23	0.50	ug/l							
Iron, Dissolved	ND	3.9	20	ug/l							
Iron, Total	ND	3.9	20	ug/l							
Lead, Dissolved	ND	0.083	0.20	ug/l							
Lead, Total	ND	0.083	0.20	ug/l							
Nickel, Dissolved	ND	0.16	2.0	ug/l							
Nickel, Total	ND	0.40	2.0	ug/l							
Selenium, Dissolved	ND	0.067	0.40	ug/l							
Selenium, Total	ND	0.067	0.40	ug/l							
Silver, Dissolved	ND	0.030	0.20	ug/l							
Silver, Total	ND	0.055	0.20	ug/l							
Thallium, Dissolved	ND	0.021	0.20	ug/l							
Thallium, Total	ND	0.021	0.20	ug/l							
Zinc, Dissolved	ND	1.7	10	ug/l							
Zinc, Total	ND	1.7	10	ug/l							

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

04/21/2023 15:37

Quality Control Results

Metals by EPA 200 Series Methods (Continued)											
					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifi
tch: W3C1908 - EPA 200.8 (Continued)											
CS (W3C1908-BS1) Aluminum. Dissolved	51.6	4.4	20		pared: 03/22/2	23 Analyzed:					
		4.4 4.4	20 20	ug/l	50.0 50.0		103 99	85-115 85-115			
Aluminum, Total Antimony, Dissolved		0.089	0.50	ug/l	50.0		101	85-115			
Antimony, Total		0.089		ug/l			101	85-115			
Antimony, rotal Arsenic, Dissolved	00.0	0.069	0.50	ug/l	50.0		101				
			0.40	ug/l	50.0			85-115			
,		0.074	0.40	ug/l	50.0		104	85-115			
, ,		0.062	0.10	ug/l	50.0		86	85-115			
,		0.029	0.10	ug/l	50.0		86	85-115			
Cadmium, Dissolved		0.042	0.20	ug/l	50.0		99	85-115			
Cadmium, Total		0.042	0.20	ug/l	50.0		99	85-115			
Chromium, Dissolved		0.089	0.20	ug/l	50.0		100	85-115			
Chromium, Total		0.089	0.20	ug/l	50.0		100	85-115			
Copper, Dissolved		0.23	0.50	ug/l	50.0		100	85-115			
Copper, Total		0.23	0.50	ug/l	50.0		100	85-115			
ron, Dissolved		3.9	20	ug/l	1050		109	85-115			
ron, Total		3.9	20	ug/l	1050		109	85-115			
Lead, Dissolved		0.083	0.20	ug/l	50.0		100	85-115			
_ead, Total		0.083	0.20	ug/l	50.0		100	85-115			
Nickel, Dissolved		0.16	2.0	ug/l	50.0		99	85-115			
Nickel, Total		0.40	2.0	ug/l	50.0		99	85-115			
Selenium, Dissolved		0.067	0.40	ug/l	50.0		100	85-115			
Selenium, Total		0.067	0.40	ug/l	50.0		100	85-115			
Silver, Dissolved		0.030	0.20	ug/l	50.0		99	85-115			
Silver, Total		0.055	0.20	ug/l	50.0		99	85-115			
Thallium, Dissolved		0.021	0.20	ug/l	50.0		100	85-115			
Thallium, Total		0.021	0.20	ug/l	50.0		100	85-115			
Zinc, Dissolved	49.9	1.7	10	ug/l	50.0		100	85-115			
Zinc, Total	49.9	1.7	10	ug/l	50.0		100	85-115			
atrix Spike (W3C1908-MS1)	Source: 3	C10137-03		Pre	pared: 03/22/2	23 Analyzed:	03/23/23	3			
Aluminum, Dissolved	1190	4.4	20	ug/l	50.0	30.7	NR	70-130			
Aluminum, Total	1130	4.4	20	ug/l	50.0	948	356	70-130			MS-
Antimony, Dissolved	50.0	0.089	0.50	ug/l	50.0	0.513	99	70-130			
Antimony, Total	50.0	0.089	0.50	ug/l	50.0	0.714	99	70-130			
Arsenic, Dissolved	51.2	0.074	0.40	ug/l	50.0	0.814	101	70-130			
Arsenic, Total	51.2	0.074	0.40	ug/l	50.0	1.13	100	70-130			
Beryllium, Dissolved	42.5	0.062	0.10	ug/l	50.0	ND	85	70-130			
Beryllium, Total	42.5	0.029	0.10	ug/l	50.0	ND	85	70-130			
Cadmium, Dissolved	49.0	0.042	0.20	ug/l	50.0	ND	98	70-130			
Cadmium, Total	49.0	0.042	0.20	ug/l	50.0	ND	98	70-130			

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

04/21/2023 15:37

Quality Control Results

Metals by EPA 200 Series Methods (Continued)											
					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
atch: W3C1908 - EPA 200.8 (Continued)											
		C10137-03			pared: 03/22/2	•					
Chromium, Dissolved	- 51.1	0.089	0.20	ug/l	50.0	0.490	101	70-130			
Chromium, Total		0.089	0.20	ug/l	50.0	1.69	99	70-130			
Copper, Dissolved		0.23	0.50	ug/l	50.0	2.48	102	70-130			
Copper, Total		0.23	0.50	ug/l	50.0	5.15	97	70-130			
Iron, Dissolved	- 2180	3.9	20	ug/l	1050	19.3	206	70-130			
Iron, Total	- 2180	3.9	20	ug/l	1050	1110	103	70-130			
Lead, Dissolved	- 51.8	0.083	0.20	ug/l	50.0	ND	103	70-130			
Lead, Total	- 51.8	0.083	0.20	ug/l	50.0	2.16	99	70-130			
Nickel, Dissolved	- 50.1	0.16	2.0	ug/l	50.0	0.310	99	70-130			
Nickel, Total	- 50.1	0.40	2.0	ug/l	50.0	1.25	98	70-130			
Selenium, Dissolved	49.1	0.067	0.40	ug/l	50.0	0.109	98	70-130			
Selenium, Total	49.1	0.067	0.40	ug/l	50.0	0.0981	98	70-130			
Silver, Dissolved	49.2	0.030	0.20	ug/l	50.0	ND	98	70-130			
Silver, Total	49.2	0.055	0.20	ug/l	50.0	ND	98	70-130			
Thallium, Dissolved	49.4	0.021	0.20	ug/l	50.0	ND	99	70-130			
Thallium, Total	49.4	0.021	0.20	ug/l	50.0	ND	99	70-130			
Zinc, Dissolved	77.5	1.7	10	ug/l	50.0	8.33	138	70-130			
Zinc, Total	- 77.5	1.7	10	ug/l	50.0	29.2	97	70-130			
Matrix Spike (W3C1908-MS2)	ource: 3	C16060-01		Pre	pared: 03/22/2	23 Analyzed:	03/23/2	2			
Aluminum, Dissolved		4.4	20	ug/l	50.0	ND	97	70-130			
Aluminum, Total	48.4	4.4	20	ug/l	50.0	ND	97	70-130			
Antimony, Dissolved	48.5	0.089	0.50	ug/l	50.0	ND	97	70-130			
Antimony, Total	48.5	0.089	0.50	ug/l	50.0	ND	97	70-130			
Arsenic, Dissolved	49.4	0.074	0.40	ug/l	50.0	0.602	97	70-130			
Arsenic, Total	49.4	0.074	0.40	ug/l	50.0	0.602	97	70-130			
Beryllium, Dissolved	44.0	0.062	0.10	ug/l	50.0	ND	88	70-130			
Beryllium, Total	44.0	0.029	0.10	ug/l	50.0	ND	88	70-130			
Cadmium, Dissolved	46.5	0.042	0.20	ug/l	50.0	ND	93	70-130			
Cadmium, Total	46.5	0.042	0.20	ug/l	50.0	ND	93	70-130			
Chromium, Dissolved	47.1	0.089	0.20	ug/l	50.0	0.396	93	70-130			
Chromium, Total	47.1	0.089	0.20	ug/l	50.0	0.396	93	70-130			
Copper, Dissolved	48.4	0.23	0.50	ug/l	50.0	1.82	93	70-130			
Copper, Total	48.4	0.23	0.50	ug/l	50.0	1.82	93	70-130			
Iron, Dissolved		3.9	20	ug/l	1050	ND	101	70-130			
Iron, Total		3.9	20	ug/l	1050	ND	101	70-130			
		0.083	0.20	ug/l	50.0	0.127	95	70-130			
Lead, Dissolved			0.20	ug/l	50.0	0.127	95	70-130			
Lead, Dissolved Lead, Total	47.4	0.083	0.20								
Lead, Total		0.083 0.16		-	50.0	0.535	91	70-130			
,	46.2	0.083 0.16 0.40	2.0	ug/l ug/l	50.0 50.0	0.535 0.535	91 91	70-130 70-130			

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

04/21/2023 15:37

3C10137

Quality Control Results

(Continued)

Page 24 of 29

Metals by EPA 200 Series Methods (Continue	d)										
					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifi
tch: W3C1908 - EPA 200.8 (Continued)											
Matrix Spike (W3C1908-MS2) Selenium, Dissolved		C16060-01 0.067	0.40	Pre ug/l	pared: 03/22/2 50.0	23 Analyzed: 1.66	03/23/2 3	3 70-130			
Selenium, Total		0.067	0.40	ug/l	50.0	1.66	98	70-130			
Silver, Dissolved		0.030	0.20	ug/l	50.0	ND	93	70-130			
Silver, Total		0.055	0.20	ug/l	50.0	ND	93	70-130			
Thallium. Dissolved		0.033	0.20	ug/l	50.0	ND	93	70-130			
Thallium, Total		0.021	0.20	_	50.0	ND	93	70-130			
Zinc, Dissolved		1.7	10	ug/l	50.0	8.09	89	70-130			
Zinc, Total		1.7	10	ug/l	50.0		89	70-130			
Ziric, Total	52.7	1.7	10	ug/l	50.0	8.09	09	70-130			
Matrix Spike Dup (W3C1908-MSD1)		C10137-03	00		pared: 03/22/2	•			0	20	
Aluminum, Dissolved		4.4	20	ug/l	50.0	30.7	NR	70-130	2	30	
Aluminum, Total		4.4	20	ug/l	50.0	948	393	70-130	2	30	MS-
Antimony, Dissolved		0.089	0.50	ug/l	50.0	0.513	100	70-130	1	30	
Antimony, Total		0.089	0.50	ug/l	50.0	0.714	100	70-130	1	30	
Arsenic, Dissolved	*	0.074	0.40	ug/l	50.0	0.814	101	70-130	0.009	30	
Arsenic, Total	02	0.074	0.40	ug/l	50.0	1.13	100	70-130	0.009	30	
Beryllium, Dissolved		0.062	0.10	ug/l	50.0	ND	86	70-130	0.8	30	
Beryllium, Total		0.029	0.10	ug/l	50.0	ND	86	70-130	8.0	30	
Cadmium, Dissolved		0.042	0.20	ug/l	50.0	ND	97	70-130	0.7	30	
Cadmium, Total	48.7	0.042	0.20	ug/l	50.0	ND	97	70-130	0.7	30	
Chromium, Dissolved	50.6	0.089	0.20	ug/l	50.0	0.490	100	70-130	0.8	30	
Chromium, Total		0.089	0.20	ug/l	50.0	1.69	98	70-130	8.0	30	
Copper, Dissolved	53.8	0.23	0.50	ug/l	50.0	2.48	102	70-130	0.2	30	
Copper, Total	53.8	0.23	0.50	ug/l	50.0	5.15	97	70-130	0.2	30	
Iron, Dissolved	2170	3.9	20	ug/l	1050	19.3	205	70-130	0.6	30	
Iron, Total	2170	3.9	20	ug/l	1050	1110	101	70-130	0.6	30	
Lead, Dissolved	51.4	0.083	0.20	ug/l	50.0	ND	103	70-130	0.6	30	
Lead, Total	51.4	0.083	0.20	ug/l	50.0	2.16	98	70-130	0.6	30	
Nickel, Dissolved	49.2	0.16	2.0	ug/l	50.0	0.310	98	70-130	2	30	
Nickel, Total	49.2	0.40	2.0	ug/l	50.0	1.25	96	70-130	2	30	
Selenium, Dissolved	49.1	0.067	0.40	ug/l	50.0	0.109	98	70-130	0.1	30	
Selenium, Total	49.1	0.067	0.40	ug/l	50.0	0.0981	98	70-130	0.1	30	
Silver, Dissolved	48.8	0.030	0.20	ug/l	50.0	ND	98	70-130	8.0	30	
Silver, Total		0.055	0.20	ug/l	50.0	ND	98	70-130	0.8	30	
Thallium, Dissolved	49.1	0.021	0.20	ug/l	50.0	ND	98	70-130	0.7	30	
Thallium, Total	49.1	0.021	0.20	ug/l	50.0	ND	98	70-130	0.7	30	
Zinc, Dissolved	75.9	1.7	10	ug/l	50.0	8.33	135	70-130	2	30	
Zinc, Total	75.9	1.7	10	ug/l	50.0	29.2	93	70-130	2	30	
Matrix Spike Dup (W3C1908-MSD2)	Source: 3				pared: 03/22/2			_			

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

04/21/2023 15:37

Quality Control Results

Metals by EPA 200 Series Methods (Continued)											
					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualif
etch: W3C1908 - EPA 200.8 (Continued)											
		C16060-01	00		pared: 03/22/2	-			0	00	
Aluminum, Total		4.4	20	ug/l	50.0	ND	94	70-130	2	30	
Antimony, Dissolved		0.089	0.50	ug/l	50.0	ND	96	70-130	0.9	30	
Antimony, Total		0.089	0.50	ug/l	50.0	ND	96	70-130	0.9	30	
Arsenic, Dissolved		0.074	0.40	ug/l	50.0	0.602	97	70-130	0.4	30	
Arsenic, Total		0.074	0.40	ug/l	50.0	0.602	97	70-130	0.4	30	
Beryllium, Dissolved		0.062	0.10	ug/l	50.0	ND	84	70-130	4	30	
Beryllium, Total		0.029	0.10	ug/l	50.0	ND	84	70-130	4	30	
Cadmium, Dissolved		0.042	0.20	ug/l	50.0	ND	92	70-130	0.4	30	
Cadmium, Total		0.042	0.20	ug/l	50.0	ND	92	70-130	0.4	30	
Chromium, Dissolved		0.089	0.20	ug/l	50.0	0.396	93	70-130	0.1	30	
Chromium, Total		0.089	0.20	ug/l	50.0	0.396	93	70-130	0.1	30	
Copper, Dissolved		0.23	0.50	ug/l	50.0	1.82	93	70-130	0.1	30	
Copper, Total	48.3	0.23	0.50	ug/l	50.0	1.82	93	70-130	0.1	30	
Iron, Dissolved	- 1080	3.9	20	ug/l	1050	ND	103	70-130	1	30	
Iron, Total	- 1080	3.9	20	ug/l	1050	ND	103	70-130	1	30	
Lead, Dissolved	47.4	0.083	0.20	ug/l	50.0	0.127	94	70-130	0.04	30	
Lead, Total	47.4	0.083	0.20	ug/l	50.0	0.127	94	70-130	0.04	30	
Nickel, Dissolved	46.2	0.16	2.0	ug/l	50.0	0.535	91	70-130	0.1	30	
Nickel, Total	46.2	0.40	2.0	ug/l	50.0	0.535	91	70-130	0.1	30	
Selenium, Dissolved	- 50.2	0.067	0.40	ug/l	50.0	1.66	97	70-130	0.5	30	
Selenium, Total	- 50.2	0.067	0.40	ug/l	50.0	1.66	97	70-130	0.5	30	
Silver, Dissolved	46.2	0.030	0.20	ug/l	50.0	ND	92	70-130	0.3	30	
Silver, Total	46.2	0.055	0.20	ug/l	50.0	ND	92	70-130	0.3	30	
Thallium, Dissolved	46.5	0.021	0.20	ug/l	50.0	ND	93	70-130	0.3	30	
Thallium, Total	46.5	0.021	0.20	ug/l	50.0	ND	93	70-130	0.3	30	
Zinc, Dissolved	- 55.6	1.7	10	ug/l	50.0	8.09	95	70-130	5	30	
Zinc, Total	- 55.6	1.7	10	ug/l	50.0	8.09	95	70-130	5	30	
tch: W3C1950 - EPA 245.1											
Blank (W3C1950-BLK1)				Pre	pared: 03/22/2	23 Analyzed:	03/23/23	3			
Mercury, Dissolved	ND	0.037	0.050	ug/l	,,,	,					
LCS (W3C1950-BS1)				Pre	pared: 03/22/2	23 Analyzed:	03/23/23	3			
Mercury, Dissolved	0.998	0.037	0.050	ug/l	1.00		100	85-115			
• • •		C10016-01			pared: 03/22/2	-					
Mercury, Dissolved	0.994	0.037	0.050	ug/l	1.00	ND	99	70-130			
Matrix Spike Dup (W3C1950-MSD1)	Source: 3	C10016-01		Pre	pared: 03/22/2	23 Analyzed:	03/23/23	3			
Mercury, Dissolved	- 1.01	0.037	0.050	ug/l	1.00	ND	101	70-130	1	20	

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

04/21/2023 15:37

Quality Control Results

Semivolatile Organics - Low Level by Tandem GC/MS/N	1S										
Analyte	Result	MDL	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
atch: W3C1531 - EPA 625.1											•
Blank (W3C1531-BLK1)				Pre	pared: 03/17/2	3 Analyzed:	04/14/23	3			
Acenaphthene	ND	1.2	5.0	ng/l	,,.						
Acenaphthylene	ND	1.0	5.0	ng/l							
Anthracene	ND	1.1	5.0	ng/l							
Benzo (a) anthracene	ND	0.92	5.0	ng/l							
Benzo (a) pyrene	ND	0.97	5.0	ng/l							
Benzo (b) fluoranthene	ND	1.6	5.0	ng/l							
Benzo (g,h,i) perylene	ND	1.0	5.0	ng/l							
Benzo (k) fluoranthene	ND	1.2	5.0	ng/l							
Chrysene	ND	1.4	5.0	ng/l							
Dibenzo (a,h) anthracene	ND	1.2	5.0	ng/l							
Fluoranthene	ND	1.5	5.0	ng/l							
Fluorene	ND	1.1	5.0	ng/l							
Indeno (1,2,3-cd) pyrene	ND	0.97	5.0	ng/l							
Naphthalene	ND	3.2	5.0	ng/l							
Phenanthrene	ND	3.0	5.0	ng/l							
Pyrene		1.4	5.0	ng/l							
Surrogate(s) 1,3-Dimethyl-2-nitrobenzene				ng/l	100		70	62-120			
Perylene-d12	38.2			ng/l	100		38	36-120			
LCS (W3C1531-BS1)				Pre	pared: 03/17/2	3 Analyzed	04/14/23	3			
Acenaphthene	41.8	1.2	5.0	ng/l	50.0		84	60-132			
Acenaphthylene	40.1	1.0	5.0	ng/l	50.0		80	54-126			
Anthracene		1.1	5.0	ng/l	50.0		74	43-120			
Benzo (a) anthracene	- 31.3	0.92	5.0	ng/l	50.0		63	42-133			
Benzo (a) pyrene	25.4	0.97	5.0	ng/l	50.0		51	32-148			
Benzo (b) fluoranthene	30.6	1.6	5.0	ng/l	50.0		61	42-140			AN-
Benzo (g,h,i) perylene	30.8	1.0	5.0	ng/l	50.0		62	0.1-195			
Benzo (k) fluoranthene	32.5	1.2	5.0	ng/l	50.0		65	25-146			AN-
Chrysene	32.4	1.4	5.0	ng/l	50.0		65	44-140			
Dibenzo (a,h) anthracene	- 31.7	1.2	5.0	ng/l	50.0		63	0.1-200			
Fluoranthene	39.3	1.5	5.0	ng/l	50.0		79	43-121			
Fluorene	40.8	1.1	5.0	ng/l	50.0		82	70-120			
Indeno (1,2,3-cd) pyrene	26.5	0.97	5.0	ng/l	50.0		53	0.1-151			
Naphthalene	40.3	3.2	5.0	ng/l	50.0		81	36-120			
Phenanthrene	40.0	3.0	5.0	ng/l	50.0		80	65-120			
Pyrene		1.4	5.0	ng/l	50.0		77	70-120			
Surrogate(s) 1,3-Dimethyl-2-nitrobenzene				ng/l	100		80	62-120			
Perylene-d12	32.4			ng/l	100		32	36-120			S-1

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

04/21/2023 15:37

Quality Control Results

					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifi
atch: W3C1531 - EPA 625.1 (Continued)											
LCS Dup (W3C1531-BSD1)				Pre	pared: 03/17/2	23 Analyzed: 04	4/14/23	3			
Acenaphthene	38.8	1.2	5.0	ng/l	50.0		78	60-132	7	30	
Acenaphthylene	39.0	1.0	5.0	ng/l	50.0		78	54-126	3	30	
Anthracene	39.3	1.1	5.0	ng/l	50.0		79	43-120	5	30	
Benzo (a) anthracene	32.6	0.92	5.0	ng/l	50.0		65	42-133	4	30	
Benzo (a) pyrene	28.3	0.97	5.0	ng/l	50.0		57	32-148	11	30	
Benzo (b) fluoranthene	31.8	1.6	5.0	ng/l	50.0		64	42-140	4	30	AN-
Benzo (g,h,i) perylene	30.5	1.0	5.0	ng/l	50.0		61	0.1-195	0.9	30	
Benzo (k) fluoranthene	32.7	1.2	5.0	ng/l	50.0		65	25-146	0.6	30	AN-
Chrysene	31.1	1.4	5.0	ng/l	50.0		62	44-140	4	30	
Dibenzo (a,h) anthracene	30.6	1.2	5.0	ng/l	50.0		61	0.1-200	3	30	
Fluoranthene	39.7	1.5	5.0	ng/l	50.0		79	43-121	1	30	
Fluorene	39.5	1.1	5.0	ng/l	50.0		79	70-120	3	30	
Indeno (1,2,3-cd) pyrene	29.3	0.97	5.0	ng/l	50.0		59	0.1-151	10	30	
Naphthalene	37.9	3.2	5.0	ng/l	50.0		76	36-120	6	30	
Phenanthrene	40.4	3.0	5.0	ng/l	50.0		81	65-120	0.8	30	
Pyrene	39.1	1.4	5.0	ng/l	50.0		78	70-120	1	30	
Surrogate(s)											
1,3-Dimethyl-2-nitrobenzene	75.8			ng/l	100		76	62-120			
Perylene-d12	30.9			ng/l	100		31	36-120			S-

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 Project Number: SGVCOG Fire Effects Study

Project Manager: Brenda Stevens

Reported:

04/21/2023 15:37

Item

Notes and Definitions

ittii	Definition
AN-IP	Sample results for structural isomers may have contribution from their isomeric pair.
FILT	The sample was filtered prior to analysis.
J	Estimated conc. detected <mrl and="">MDL.</mrl>
M-02	Due to the nature of matrix interferences, sample was diluted prior to preparation. The MDL and MRL were raised due to the dilution.
MS-02	The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte inherent in the sample.
ND	Not Detected
O-04	This analysis was performed outside the EPA recommended holding time.
O-09	This sample was received with the EPA recommended holding time expired.
P-6	The sample was filtered and preserved prior to analysis.
S-11	Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.
%REC	Percent Recovery
Dil	Dilution
MDL	Method Detection Limit
MRL	The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. The MRL is also known as Limit of Quantitation (LOQ)
ND	NOT DETECTED at or above the Method Reporting Limit (MRL). If Method Detection Limit (MDL) is reported, then ND means not detected at or above the MDL.
RPD	Relative Percent Difference
Source	Sample that was matrix spiked or duplicated.

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

All results are expressed on wet weight basis unless otherwise specified.

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

30/0137

1	1	-)
---	---	---	--	---

Chain of Custody

Page ____ of ___

		I		It at Natar				
From: To:				Lab Notes:				
WSP Environment & Infrastructure Solu	Weck Laboratories							
9177 Sky Park Court	14859 Clark Aver							
San Diego, CA 92123		Industry, CA 9174	l 5					
(661) 373-5505		(626) 336-2139						
(858) 278-5300 Fax		(626) 336-2634 F	ax					
Contact: Brenda Stevens/Kimberly Hen	ry	Contact: Chris Sa	matmanakit			•	*.	
PO#:	Project	Number:		Project Name:	Samp	le Matrix:		
C015102726	5025-	-22-0004		SGVCOG Fire Effects Study	Water			
SampleID	Sample Date	Sample Time	Sample Type	Analysis	Container	Pres	No. of Bottles	
F-193B-R_2223_W3_01	03/11/23	0200	Composite	Tot&Diss.Metal,Ammonia, Nutrients(N03,N02,TKN, TotN,TotP,DissP), Chlorophyll-a, PAH	1-L Amber Glass	≤6°C	16	
F-194B-R_2223_W3_01		0220	Composite	Tot&Diss.Metal,Ammonia, Nutrients(N03,N02,TKN, TotN,TotP,DissP), Chlorophyll-a, PAH	1-L Amber Glass	≤6°C	16	
ARCAD_WA_CON_2223_W3_01	CAD_WA_CON_2223_W3_01		Composite	Tot&Diss.Metal,Ammonia, Nutrients(N03,N02,TKN, TotN,TotP,DissP), Chlorophyll-a, PAH	1-L Amber Glass	≤6°C	16	
F-193B-R_2223_W3_01	03/10/23	1545	Grab	TDS (SM 2540C); TSS (SM 2540D)	2-L Poly	Unpres.	1	
F-194B-R_2223_W3_01	I	1610	Grab	TDS (SM 2540C); TSS (SM 2540D)	2-L Poly	Unpres.	1	
ARCAD_WA_CON_2223_W3_01		1500	Grab	TDS (SM 2540C); TSS (SM 2540D)	2-L Poly	Unpres.	1	
ARCAD_WA_CON_2223_W3_02		1500	Grab	TDS (SM 2540C); TSS (SM 2540D)	2-L Poly	Unpres.	1	
F-193B-R_2223_W3_01	-	1545	Grab	Total Hardness (EPA 200.7)	500-mL Poly	HNO3	1	
F-194B-R_2223_W3_01		1610	Grab	Total Hardness (EPA 200.7)	500-mL Poly	HNO3	1	
ARCAD_WA_CON_2223_W3_01		1500	Grab	Total Hardness (EPA 200.7)	500-mL Poly	HNO3	1	
ARCAD_WA_CON_2223_W3_02	1	1500	Grab	Total Hardness (EPA 200.7)	500-mL Poly	HNO3	1	
				:				
Special Instructions/Comments:						•		
Metals (Dissolved and Total) to include Please provide results to Brenda Steve	aluminum, antimor	ny, arsenic, berylliu s@wsp.com) and L	ım, cadmium, chrom uis De La Torre (luis	ium (total), chromium (hexavalent), copper, iron, lead, mercury, nickel, selenium, silver, s.delatorre@wsp.com) Refer to compositing instr	thallium, and zinc	ilia PM	a : (
Sampled and Relinquished By:				Received By:	00110105 7011	V	X. (
				Print: Helen Quach	Date/Time: 3/12/23 7264			
				Sign: A	9.59			
Print: Date/Time:				Print:	Date/Time:			
				Sign:				
Print: Date/Time:				Print:	Date/Time:			
Sign:			·	Sign:		*		

Sample Receipt Checklist

Sample Receipt Checklist Prepared by: PM Comments Signature: Samples Checked by: COC Sample Preservation Verification? **Receipt Information** WKO Logged by: Project Manager notified? Sample Temperature COC matches sample labels? COC properly completed? Task Project Manager notified? VOC Headspace: (No) none, If Yes (See comment) Project Manager notified? Samples received on ice? COC present at receipt? O&G pH <2 verified? Free Chlorine Tested < 0.1 (Organics Analyses) 525.2<2; 6710B<2; 608.3 5-9 Metals <2; H2SO4 pres tests <2; 522<4; TOC <2; 508.1, pH verified upon receipt? 524.2, 524.3, 624.1, 8260, 1666 P/T, LUFT Sample labels checked for correct preservation? Received within holding time? Sufficient sample volume? Samples in proper containers? All samples intact? Ice Type (Blue/Wet) pH adjusted for O&G Weck WKO: Lester Abad Lester Abad Lester Abad 3C10137 Yes \boxtimes \boxtimes \boxtimes \boxtimes \boxtimes \boxtimes \boxtimes 1.1 °C Æ Date/Time Received: # of Samples: Delivered by: X \boxtimes \boxtimes Date: pH paper Lot# Acid Lot# pH Reading: Cl Test Strip Lot# pH paper Lot# Amt added: Luis 11 03/12/23 09:59 03/12/23 Comments <6mm/Pea size?

Subcontract Order 0.71165

Subcontracted Laboratory:

931 W. Barkley Ave **Enthalpy Analytical**

Phone: (714) 771-6900 Orange, CA 92868

Fax: (714) 538-1209

Turn Around Time:

Client Manager: Normal unless noted in comments Chris Samatmanakit

Project Name:

San Gabriel Valley Council of Governmen

Sampler Employed by:

Drinking Water:

Yes) (<u>S</u>) N O

Need Transfer File (xls): Tracking Number:

Project Number: 3C10137

Analysis

Sampled: Sample Name: 03/11/2023 02:00 3C10137-01/F_193B_R-2223_W3_01

Chlorophyll-a - SM 10200H

Sampled: 03/11/20 Chlorophyll-a - SM 10200H Sample Name: 3C10137-02/F_194B_R-2223_W3_01 03/11/2023 02:20

Sampled By: Luis De La Torre
1035mL filtered on 3/12/23 at 11:50am by HEQ

Matrix: Water 03/13/2023 02:00

Expires

Comments

Matrix: Water 03/13/2023 02:20 Sampled By: Luis De La Torre 1030mL filtered on 3/12/23 at 12:19am by HEQ

Sample Name: 3C10137-03/ARCAD_WA_CON_2223_W3_01

Sampled: Chlorophyll-a - SM 10200H 03/11/2023 02:00

03/13/2023 02:00 Matrix: Water

1040mL filtered on 3/12/23 at 13:04 by HEQ. Sampled By: Luis De La Torre

Rélingished By Remarks / Special Comments: Date / Time Received By Sample Condition Evidence Seal Intact: Container Attacked: Preserved at Lab: Temperature: Preserved: 1315 Yes æ Yes Yes Date / Time N_O $\frac{Z}{0}$ $\frac{Z}{0}$ <u>8</u>

Relingished By

Date / Time Received By

Date / Time

36191

Enthalpy Analytical 931 West Barkley Ave Orange, CA 92868 (714) 771-6900

enthalpy.com

Lab Job Number: 481475

Report Level: II

Report Date: 03/28/2023

Analytical Report *prepared for:*

Chris Samatmanakit Weck Laboratories 14859 Clark Ave. City of Industry, CA 91745

Location: 3C10137 San Gabriel Valley Council of Government

Authorized for release by:

duphgias Le

Quynhgiao Le, Project Manager

714-7716900

quynhgiao.le@enthalpy.com

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the above signature which applies to this PDF file as well as any associated electronic data deliverable files. The results contained in this report meet all requirements of NELAP and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

CA ELAP# 1338, NELAP# 4038, SCAQMD LAP# 18LA0518, LACSD ID# 10105

Sample Summary

Chris Samatmanakit Lab Job #: 481475

Weck Laboratories Location: 3C10137 San Gabriel Valley Council 14859 Clark Ave.

of Government

City of Industry, CA 91745 Date Received: 03/14/23

Sample ID	Lab ID	Collected	Matrix
3C10137-01/F_193B_R-2223_W3_01	481475-001	03/11/23 14:00	Water
3C10137-02/F_194B_R-2223_W3_01	481475-002	03/11/23 14:00	Water
3C10137-03/ARCAD_WA_CON_2223_W3_01	481475-003	03/11/23 14:00	Water

0.7116.5 Subcontract Order

	ORATORIES, INC.	, -		3(JUCUITITACE	Order
Enthalpy A 931 W. Bar Orange, C. Phone: (71- Fax: (714) 5	kley Ave A 92868 4) 771-6900 38-1209		C Pi Si D N	urn Around Time: lient Manager: roject Name: ampler Employed by: rinking Water: leed Transfer File (xls): racking Number:	Normal unless noted in of Chris Samatmanakit San Gabriel Valley Counce Yes / No Yes / No	
Project Analysis	t Number:	3C10137	Expires	Comments		
Sample Na Sampled: Chlorophy	ame: 3C10137-0 03/11/202 II-a - SM 10200H	01/F_193B_R-2223_W3_01 3 02:00	Matrix: Wat		Luis De La Torre on 3/12/23 at 11:50am by HEQ	
Sample Na Sampled: Chlorophy	ame: 3C10137-(03/11/202 II-a - SM 10200H) 2/F_194B_R-2223_W3_01 3 02:20	Matrix: Wat 03/13/2023 (Luis De La Torre on 3/12/23 at 12:19am by HEQ	
Sample Na Sampled: Chlorophy	ame: 3C10137-(03/11/202 II-a - SM 10200H	93/ARCAD_WA_CON_2223_W3 8 02:00	_01 Matrix: Wat 03/13/2023 (Luis De La Torre on 3/12/23 at 13:04 by HEQ.	
· Remarks	/ Special Comme	nts:				Yes / No Yes / No
		3/14	12115		Preserved at Lab:	Yes / No Yes / No
Relinqished	Ву	Da	te / Time Rec	eived By	3/14/23 13	Date / Time
Relingished	Ву	Da	te / Time Rec	eived By		Date / Time
						• 1/2 - 1

SAMPLE ACCEPTANCE CHECKLIST

	i					
Section	1		· ·	. 11-	1 - 1 2	
Clien	:: Weck (1960 Received: 3	pratories	Project: San Gabrie	<u> 1 Ual</u>		
Date	Received:	<u> 3/14/23 </u>	Sampler's Name Present:	Yes	Ž⁄ų∘	
Section						
Samp	le(s) received in a cool	er? XYes, How many? _	NO (skip section 2)	•	: Temp (°C) No Cooler)	:
i .			#2:#3:	#4:		
			ptance range is < 10°C but not frozen). It is	acceptable	for sample:	collected
Chian		mple receipt to have a higher tempe	rature as long as there is evidence that coo	ing has begu	ın.)	
Snipp	ing Information:					·····
Secti	on 3					
Was ⁻	he cooler packed with	: 🔀 ice 🔲 ice Packs	Bubble Wrap Styrof	oam		
		Paper None	Other			
Coole	r Temp (°C): #1:	<u>0.7</u> #2:	#3:	_#4:		
Secti	on 4			YES	NO	N/A
Was	COC received?			\sim		
Are s	ample IDs present?			X		
Are s	ampling dates & times	present?		F		
ls a r	elinquished signature p	resent?		ブ		
Are t	ne tests required clearl	y indicated on the COC?		×		ing a sam
Are c	ustody seals present?				X	Strill I
	if custody seals are pre	esent, were they intact?		:		χ
Are a	ll samples sealed in pla	stic bags? (Recommended	for Microbiology samples)			\rightarrow
Did a	I samples arrive intact	? If no, indicate in Section	4 below.	\times		
	. 	ith COC? (ID, dates and tim		×		
Were		in the correct containers f	· · · · · · · · · · · · · · · · · · ·	×		
		eled with the correct prese				X.
		OA vials greater than 5-6 m				$\perp X \perp$
Was	a sufficient amount of s	sample submitted for the r	equested tests?	$\perp X \perp$		
Secti	on 5 Explanations/Co	mments				
	, , ,					
Secti	on 6					
	i i	the Project Manager notifi	ied? Verbal PM Initials:	Date/Time		
I		and a reject manager mem	Email (email sent to/o			**********
Proie	ct Manager's response	:	(·	-	
		•				
	<u> </u>					
Com	plated Pvi			3		
com	pleted By:		Date	_		
		Enthalpy Analytical, a subsidiary	of Montrose Environmental Group ,Inc.			

Analysis Results for 481475

Chris Samatmanakit Weck Laboratories 14859 Clark Ave. City of Industry, CA 91745 Lab Job #: 481475 Location: 3C10137 San Gabriel Valley Council of Government

Date Received: 03/14/23

Sample ID: Lab ID: 481475-001 Collected: 03/11/23 14:00

Received filtered & frozen. Volume: 1035mL

481475-001 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: SM 10200-H									
Chlorophyll a	3.0		mg/M3	1.0	1	310182	03/12/23 11:50	03/21/23 17:27	ATP

Sample ID: Lab ID: 481475-002 Collected: 03/11/23 14:00

Received filtered & frozen. Volume: 1030mL

481475-002 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: SM 10200-H									
Chlorophyll a	ND		mg/M3	1.0	1	310182	03/12/23 12:19	03/21/23 17:27	ATP

Sample ID: Lab ID: 481475-003 Collected: 03/11/23 14:00

Received filtered & frozen. Volume: 1040mL

481475-003 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: SM 10200-H									
Chlorophyll a	ND		mg/M3	1.0	1	310182	02/12/23 13:04	03/21/23 17:27	ATP

ND Not Detected

Upper Los Angeles River Watershed Management Area Fire Effects Study Interim Report November 2023 – DRAFT

Bioassessment Data

FINAL REPORT

Work Orders: 3F29116 Report Date: 8/05/2023

Received Date: 06/29/2023

Turnaround Time: Normal

Phones: (858) 514-6465

Fax: (858) 278-5300

P.O. #: C015102726

Billing Code:

Project: 5025-22-0004

Attn: John Rudolph

Client: WSP USA E&I Inc. - San Diego

9177 Sky Park Court, Ste A San Diego, CA 92123

DoD-ELAP ANAB #ADE-2882 • DoD-ISO ANAB # • ELAP-CA #1132 • EPA-UCMR #CA00211 • ISO17025 ANAB #L2457.01 • LACSD #10143

This is a complete final report. The information in this report applies to the samples analyzed in accordance with the chain-of-custody document. Weck Laboratories certifies that the test results meet all requirements of TNI unless noted by qualifiers or written in the Case Narrative. This analytical report must be reproduced in its entirety.

Dear John Rudolph,

Enclosed are the results of analyses for samples received 6/29/23 with the Chain-of-Custody document. The samples were received in good condition, at 12.1 °C and on ice. All analyses met the method criteria except as noted in the case narrative or in the report with data qualifiers.

Reviewed by:

Kim G. Tu Project Manager

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 **Project Number:** 5025-22-0004

Project Manager: John Rudolph

Reported:

08/05/2023 10:36

Sample Summary

Sample Name	Sampled By	Lab ID	Matrix	Sampled	Qualifiers
405BH2A	John Rudolph	3F29116-01	Water	06/29/23 12:30	
SMC00464	John Rudolph	3F29116-02	Water	06/29/23 08:30	

3F29116 Page 2 of 18

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 **Project Number:** 5025-22-0004

Project Manager: John Rudolph

Reported:

08/05/2023 10:36

Sample Results

Sample: 405BH2A					Jampieu	: 06/29/23 12:30 by	, John Rudon
3F29116-01 (Water)	Donald	MDL	MRL	Huita	Dil	Austral	٥٠٠٠١:٤
Analyte nventional Chemistry/Physical Paramete	Result	WIDL	WIKL	Units	Dii	Analyzed	Qualif
lethod: Calculation	is by A. 111, 217, 75 M. Medious		Instr: [CALC]				
Batch ID: [CALC]	Preparation: [CALC]		Prepared: 07/2	∩/23 ∩9· <i>4</i> ∩			Analyst: YM
Nitrogen, Total	0.42	0.036	0.10	mg/l	1	07/26/23	Analyst. IIV
Method: EPA 350.1			Instr: AA06				
Batch ID: W3G1149	Preparation: _NONE (WETCHEM)		Prepared: 07/1	7/23 09:44			Analyst: YM
Ammonia as N	0.069	0.017	0.10	mg/l	1	07/21/23	,
Method: EPA 351.2			Instr: AA06				
Batch ID: W3G1531	Preparation: _NONE (WETCHEM)		Prepared: 07/2	0/23 09:40			Analyst: YM
TKN	0.15	0.065	0.10	mg/l	1	07/26/23	•
Method: EPA 353.2			Instr: AA01				
Batch ID: W3F2624	Preparation: _NONE (WETCHEM)		Prepared: 06/3	0/23 15:04			Analyst: YM
	0.27	0.040	0.20	mg/l	1	06/30/23 17:31	•
Nitrite as N	ND	42	100	ug/l	1	06/30/23 17:31	
NO2+NO3 as N	270	36	200	ug/l	1	06/30/23	
Method: SM 2540C			Instr: OVEN17				
Batch ID: W3G0117	Preparation: _NONE (WETCHEM)		Prepared: 07/0	5/23 10:10			Analyst: b
Total Dissolved Solids		4.0	10	mg/l	1	07/05/23	
Method: SM 2540D			Instr: OVEN15				
Batch ID: W3G0033	Preparation: _NONE (WETCHEM)		Prepared: 07/0	3/23 08:45			Analyst: m
Total Suspended Solids	6		5	mg/l	1	07/03/23	
etals by EPA 200 Series Methods							
Method: Calculation			Instr: [CALC]				
Batch ID: [CALC]	Preparation: [CALC]		Prepared: 07/1	2/23 19:57			Analyst: kv
Hardness as CaCO3, Total	136	0.344	3.31	mg/l	1	07/26/23	
Method: EPA 200.7			Instr: ICP03				
Batch ID: W3G0933	Preparation: EPA 200.2		Prepared: 07/1				Analyst: kv
Calcium, Dissolved	38.3	0.160	0.500	mg/l	1	07/26/23	
Calcium, Total	37.9	0.0736	0.500	mg/l	1	07/26/23	
	10.0	0.0390	0.500	mg/l	1	07/26/23	
Phosphorus, Dissolved	0.034	0.018	0.050	mg/l	1	07/26/23	
Phosphorus, Total	0.051	0.018	0.050	mg/l	1	07/26/23	
Method: EPA 200.8			Instr: ICPMS06				
Batch ID: W3G0934	Preparation: EPA 200.2		Prepared: 07/1				Analyst: t
,, <u>2.0001100</u>	12	4.4	20	ug/l	1	07/14/23	
7, 7	250	4.4	20	ug/l	1	07/14/23	
	0.61	0.23	0.50	ug/l	1	07/14/23	
Copper, Total	1.0	0.23	0.50	ug/l	1	07/14/23	
	20	3.9	20	ug/l	1	07/14/23	

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 **Project Number:** 5025-22-0004

Project Manager: John Rudolph

Reported:

08/05/2023 10:36

Sample:

Sample Results

405BH2A

(Continued)

Sampled: 06/29/23 12:30 by John Rudolph

3F29116-01 (Water)							(Continue
Analyte	Result	MDL	MRL	Units	Dil	Analyzed	Qualif
etals by EPA 200 Series Methods (Cor	ntinued)						
Method: EPA 200.8			Instr: ICPMS06				
Batch ID: W3G0934	Preparation: EPA 200.2		Prepared: 07/1				Analyst: 1
,	370	3.9	20	ug/l	1	07/14/23	
,	ND	0.083	0.20	ug/l	1	07/14/23	
	0.34	0.083	0.20	ug/l	1	07/14/23	
	62	0.11	1.0	ug/l	1	07/14/23	
g	85	0.23	1.0	ug/l	1	07/14/23	
,	ND	0.16	2.0	ug/l	1	07/14/23	
Nickel, Total	ND	0.40	2.0	ug/l	1	07/14/23	
Selenium, Dissolved	0.083	0.067	0.40	ug/l	1	07/14/23	
Selenium, Total	0.086	0.067	0.40	ug/l	1	07/14/23	
Zinc, Dissolved	ND	1.7	10	ug/l	1	07/14/23	
Zinc, Total	ND	1.7	10	ug/l	1	07/14/23	
nivolatile Organics - Low Level by GC	C/MS SIM Mode						
Method: EPA 625.1			Instr: GCMS06				
Batch ID: W3G0255	Preparation: EPA 625/L-L SF		Prepared: 07/0	06/23 09:33			Analyst:
1-Methylnaphthalene	ND	0.024	0.10	ug/l	1	07/14/23	
2-Methylnaphthalene	ND	0.026	0.10	ug/l	1	07/14/23	
Acenaphthene	ND	0.028	0.10	ug/l	1	07/14/23	BS
Acenaphthylene	ND	0.033	0.10	ug/l	1	07/14/23	BS
Anthracene	ND	0.025	0.10	ug/l	1	07/14/23	
Benzo (a) anthracene	ND	0.051	0.10	ug/l	1	07/14/23	
Benzo (a) pyrene	ND	0.051	0.10	ug/l	1	07/14/23	
Benzo (b) fluoranthene	ND	0.074	0.10	ug/l	1	07/14/23	
Benzo (g,h,i) perylene	ND	0.050	0.10	ug/l	1	07/14/23	
Benzo (k) fluoranthene	ND	0.059	0.10	ug/l	1	07/14/23	
Chrysene	ND	0.074	0.10	ug/l	1	07/14/23	
Dibenzo (a,h) anthracene	ND	0.081	0.10	ug/l	1	07/14/23	
Fluoranthene	ND	0.039	0.10	ug/l	1	07/14/23	
Fluorene	ND	0.029	0.10	ug/l	1	07/14/23	Q-
Indeno (1,2,3-cd) pyrene	ND	0.065	0.10	ug/l	1	07/14/23	
, , , , , ,	ND	0.026	0.10	ug/l	1	07/14/23	
Phenanthrene	ND	0.029	0.10	ug/l	1	07/14/23	
Pyrene	ND	0.040	0.10	ug/l	1	07/14/23	
urrogate(s)				-			
_	67%	Conc: 3.27	22-120			07/14/23	
Nitrobenzene-d5	62%	Conc: 3.06	47-120			07/14/23	
Terphenyl-d14	80%	Conc: 3.94	44-129			07/14/23	

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123

Project Number: 5025-22-0004

Project Manager: John Rudolph

Reported:

Page 5 of 18

08/05/2023 10:36

7		1	
		N	(
			v
		7	

Sample Results

(Continued)

	•								
Sample:	405BH2A						Sampled: 0	6/29/23 12:30	by John Rudolph
	3F29116-01 (Water)								(Continued)
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
Semivolatile O	ganics - Low Level by GC/MS SIM	Mode (Continued)							
Method: EPA	625.1				Instr: GCMS06				
Batch ID: W	3G0255	Preparation: EPA 625/L-L SF			Prepared: 07/0	06/23 09:33			Analyst: rmr
Sa	mple Results								(Continued)

Sample: SMC00464					Sampled	: 06/29/23 8:30 by	John Rudolph
3F29116-02 (Water)							
Analyte	Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
onventional Chemistry/Physical Param	eters by APHA/EPA/ASTM Methods						
Method: Calculation			Instr: [CALC]				
Batch ID: [CALC]	Preparation: [CALC]		Prepared: 07/2	20/23 09:40			Analyst: YMT
Nitrogen, Total	0.38	0.036	0.10	mg/l	1	07/26/23	
Method: EPA 350.1			Instr: AA06				
Batch ID: W3G1149	Preparation: _NONE (WETCHEM)		Prepared: 07/1	17/23 09:44			Analyst: YMT
Ammonia as N	0.032	0.017	0.10	mg/l	1	07/21/23	J
Method: EPA 351.2			Instr: AA06				
Batch ID: W3G1531	Preparation: _NONE (WETCHEM)		Prepared: 07/2	20/23 09:40			Analyst: YMT
TKN	0.13	0.065	0.10	mg/l	1	07/26/23	
Method: EPA 353.2			Instr: AA01				
Batch ID: W3F2624	Preparation: _NONE (WETCHEM)		Prepared: 06/3	30/23 15:04			Analyst: YMT
Nitrate as N	0.26	0.040	0.20	mg/l	1	06/30/23 17:33	
Nitrite as N	ND	42	100	ug/l	1	06/30/23 17:33	
NO2+NO3 as N	260	36	200	ug/l	1	06/30/23	
Method: SM 2540C			Instr: OVEN17				
Batch ID: W3F2548	Preparation: _NONE (WETCHEM)		Prepared: 06/2	29/23 18:05			Analyst: bel
Total Dissolved Solids		4.0	10	mg/l	1	06/30/23	
Method: SM 2540D			Instr: OVEN15				
Batch ID: W3G0033	Preparation: _NONE (WETCHEM)		Prepared: 07/0	3/23 08:45			Analyst: mes
Total Suspended Solids	5		5	mg/l	1	07/03/23	
Metals by EPA 200 Series Methods							
Method: Calculation			Instr: [CALC]				

3F29116

Metals by EPA 200 Series Methods							
Method: Calculation			Instr: [CALC]				
Batch ID: [CALC]	Preparation: [CALC]		Prepared: 07/1	2/23 19:57			Analyst: kvm
Hardness as CaCO3, Total	149	0.344	3.31	mg/l	1	07/26/23	
Method: EPA 200.7			Instr: ICP03				
Batch ID: W3G0933	Preparation: EPA 200.2		Prepared: 07/1	2/23 19:57			Analyst: kvm
Calcium, Dissolved	42.0	0.160	0.500	mg/l	1	07/26/23	
Calcium, Total	42.6	0.0736	0.500	mg/l	1	07/26/23	
Magnesium, Total	10.2	0.0390	0.500	mg/l	1	07/26/23	
Phosphorus, Dissolved	0.025	0.018	0.050	mg/l	1	07/26/23	J
Phosphorus, Total	0.038	0.018	0.050	mg/l	1	07/26/23	J

14859 Clark Avenue, City of Industry CA, 91745 | Phone: (626) 336-2139 | Fax: (626) 336-2634 www.wecklabs.com

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 **Project Number:** 5025-22-0004

Project Manager: John Rudolph

Reported:

(Continued)

08/05/2023 10:36

Sample Results

Sample:	SMC00464					Sampled:	06/29/23 8:30	by John Rudolp
	3F29116-02 (Water)							(Continued
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualific
tals by EPA	A 200 Series Methods (Continu	red)						
1ethod: EPA	A 200.7			Instr: ICP03				
Batch ID: \	W3G0933	Preparation: EPA 200.2		Prepared: 07/1	12/23 19:57			Analyst: kvr
Method: EPA	A 200.8			Instr: ICPMS06				
Batch ID: \		Preparation: EPA 200.2	4.4	Prepared: 07/1		1	07/14/23	Analyst: ty
	n, Dissolved	270	4.4	20	ug/l	1 1	07/14/23	
Aluminum	, 1012.		4.4	20	ug/l	•		
Copper, D		••	0.23	0.50	ug/l	1	07/14/23	
Copper, To		0.94	0.23	0.50	ug/l	1	07/14/23	
Iron, Diss		16	3.9	20	ug/l	1	07/14/23	
Iron, Total		370	3.9	20	ug/l	1	07/14/23	
Lead, Diss		ND	0.083	0.20	ug/l	1	07/14/23	
Lead, Tota		0.36	0.083	0.20	ug/l	1	07/14/23	
Manganes	50, 2.000.100	48	0.11	1.0	ug/l	1	07/14/23	
Manganes	30, 1010.	69	0.23	1.0	ug/l	1	07/14/23	
Nickel, Dis		ND	0.16	2.0	ug/l	1	07/14/23	
Nickel, Tot	tal	ND	0.40	2.0	ug/l	1	07/14/23	
Selenium,	, Dissolved	0.079	0.067	0.40	ug/l	1	07/14/23	
Selenium,	, Total	0.092	0.067	0.40	ug/l	1	07/14/23	
Zinc, Disse	olved	ND	1.7	10	ug/l	1	07/14/23	
Zinc, Total		ND	1.7	10	ug/l	1	07/14/23	
mivolatile C	Organics - Low Level by GC/MS	SIM Mode						
Method: EPA	A 625.1			Instr: GCMS06				
Batch ID: \	W3G0255	Preparation: EPA 625/L-L SF		Prepared: 07/0	06/23 09:33			Analyst: rm
1-Methyln:	aphthalene	ND	0.024	0.10	ug/l	1	07/14/23	
2-Methyln:	aphthalene	ND	0.026	0.10	ug/l	1	07/14/23	
Acenaphth	hene		0.028	0.10	ug/l	1	07/14/23	BS-0
Acenaphth	hylene	ND	0.033	0.10	ug/l	1	07/14/23	BS-0
Anthracen	ne	ND	0.025	0.10	ug/l	1	07/14/23	
Benzo (a)	anthracene	ND	0.051	0.10	ug/l	1	07/14/23	
Benzo (a)	pyrene	ND	0.051	0.10	ug/l	1	07/14/23	
Benzo (b)	fluoranthene	ND	0.074	0.10	ug/l	1	07/14/23	
Benzo (g,l	h,i) perylene	ND	0.050	0.10	ug/l	1	07/14/23	
Benzo (k)	fluoranthene	ND	0.059	0.10	ug/l	1	07/14/23	
Chrysene		ND	0.074	0.10	ug/l	1	07/14/23	
Dibenzo (a	a,h) anthracene	ND	0.081	0.10	ug/l	1	07/14/23	
Fluoranthe	ene	ND	0.039	0.10	ug/l	1	07/14/23	
		ND	0.029	0.10	ug/l	1	07/14/23	Q-M
Fluorene					_			
	,2,3-cd) pyrene	ND	0.065	0.10	ug/l	1	07/14/23	

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 **Project Number:** 5025-22-0004

Project Manager: John Rudolph

Reported:

08/05/2023 10:36

5

Sample Results

Sample:	SMC00464					Sampled:	06/29/23 8:30	oy John Rudolph
	3F29116-02 (Water)							(Continued)
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
Semivolatile C	Organics - Low Level by GC/MS S	IM Mode (Continued)						
Method: EPA	A 625.1			Instr: GCMS06	i			
Batch ID: \	W3G0255	Preparation: EPA 625/L-L SF		Prepared: 07/0	06/23 09:33			Analyst: rmr
Naphthale	ne		0.026	0.10	ug/l	1	07/14/23	
Phenanthi	rene	ND	0.029	0.10	ug/l	1	07/14/23	
Pyrene		ND	0.040	0.10	ug/l	1	07/14/23	
Surrogate(s)								
2-Fluorobi	iphenyl	64%	Conc: 3.04	22-120			07/14/23	
Nitrobenze	ene-d5	62%	Conc: 2.93	47-120			07/14/23	
Terphenyl	-d14	81%	Conc: 3.85	44-129			07/14/23	

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 **Project Number:** 5025-22-0004

Project Manager: John Rudolph

Reported:

Qualifier

08/05/2023 10:36

Sample Results Enthalpy Orange

 Sample:
 405BH2A
 Sampled: 06/29/23 12:30 by John Rudolph

 3F29116-01 (Water)
 3F29116-01 (Water)

MDL

MRL

Units

Dil

Analyzed

Analyte SM 10200-H

 Method: Chlorophyll
 Batch ID: 318393
 Prepared: 07/05/23 09:00
 Analyst: ATP

 Chlorophyll a
 ND
 1.0
 mg/M3
 1
 07/18/23
 H, ND

Result

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 **Project Number:** 5025-22-0004

Reported:

08/05/2023 10:36

Sample Results Enthalpy Orange

Project Manager: John Rudolph

	imple results Elitially	Orange						(Continued)
Sample:	SMC00464 3F29116-02 (Water)					Sampled: (06/29/23 8:30 by	y John Rudolph
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
SM 10200-H								
Method: Chl	orophyll	Batch ID: 318393		Prepared: 07/	05/23 09:00			Analyst: ATP
Chlorophy	II a	ND		1.0	mg/M3	1	07/18/23	H, ND

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123

Project Number: 5025-22-0004

Project Manager: John Rudolph

Reported:

08/05/2023 10:36

Conventional Chemistry/Physical Parameters by Al	PHA/EPA/AST	M Methods	5								
					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
atch: W3F2548 - SM 2540C											
Blank (W3F2548-BLK1)				Pre	pared: 06/29/2	3 Analyzed	: 06/30/2	3			
Total Dissolved Solids	ND	4.0	10	mg/l							
LCS (W3F2548-BS1)				Pre	pared: 06/29/2	3 Analyzed	: 06/30/2	3			
Total Dissolved Solids	812	4.0	10	mg/l	824		99	97-103			
Duplicate (W3F2548-DUP1)	Source: 3	F28128-11		Pre	pared: 06/29/2	3 Analyzed	06/30/2	1			
Total Dissolved Solids	7000	4.0	10	mg/l		6970	, ,		0.5	10	
Dumlicate (M252549 DUD2)	Cauran 3	F29117-04		Duo	marrad, 06/20/2	2 Analysed	. 06/20/2	,			
Duplicate (W3F2548-DUP2) Total Dissolved Solids	Source: 3	4.0	10	mg/l	pared: 06/29/2	6340	: 06/30/2:	•	1	10	
				Ü							
atch: W3F2624 - EPA 353.2											
Blank (W3F2624-BLK1)	ND	0.040	0.45	,: <i>I</i> I	Prepared & A	nalyzed: 06/	30/23				
Nitrate as N		0.040	0.15	mg/l							
Nitrite as N		42	100	ug/l							
NO2+NO3 as N	ND	36	200	ug/l							
LCS (W3F2624-BS1)					Prepared & A	nalyzed: 06/	30/23				
Nitrate as N	1.05	0.040	0.15	mg/l	1.00		105	90-110			
Nitrite as N	1010	42	100	ug/l	1000		101	90-110			
NO2+NO3 as N	1050	36	200	ug/l	1000		105	90-110			
Matrix Spike (W3F2624-MS1)	Source: 3	F29099-01			Prepared & A	nalvzed: 06/	30/23				
Nitrate as N		0.040	0.15	mg/l	2.00	7.31	100	90-110			
Nitrite as N	1010	42	100	ug/l	1000	ND	101	90-110			
NO2+NO3 as N	9300	36	200	ug/l	2000	7310	100	90-110			
Matrix Spike (W3F2624-MS2)	Source: 3	F29118-03			Prepared & A	nalvzed: 06/	30/23				
Nitrate as N		0.040	0.15	mg/l	2.00	ND	105	90-110			
Nitrite as N	1010	42	100	ug/l	1000	ND	101	90-110			
NO2+NO3 as N	2100	36	200	ug/l	2000	ND	105	90-110			
				Ü							
Matrix Spike Dup (W3F2624-MSD1) Nitrate as N		F29099-01 0.040	0.15	mg/l	Prepared & A 2.00	nalyzed: 06/ 7.31	30/23 100	90-110	0	20	
Nitrite as N		42	100	ug/l	1000	ND	101	90-110	0	20	
NO2+NO3 as N		36	200	ug/l	2000	7310	100	90-110	0	20	
NOZTNOS as N	9300	30	200	ug/i	2000	7310	100	90-110	U	20	
Matrix Spike Dup (W3F2624-MSD2)		F29118-03	0.45		Prepared & A	•		00.440			
Nitrate as N	2.07	0.040	0.15	mg/l	2.00	ND	104	90-110	1	20	
Nitrite as N		42	100	ug/l	1000	ND	101	90-110	0	20	
NO2+NO3 as N	2070	36	200	ug/l	2000	ND	104	90-110	1	20	
atch: W3G0033 - SM 2540D											
Blank (W3G0033-BLK1)					Prepared & A	nalyzed: 07/	03/23				
Total Suspended Solids	ND		5	mg/l		-					
LCS (W3G0033-BS1)					Prepared & A	nalvzed: 07/	03/23				
Total Suspended Solids			5	mg/l	62.2	, 202. 01/	109	90-110			
Duplicate (W3G0033-DHP1)	Source: 2	F29004-05			Drangrad 9: A	naluzed: 07	N3/22				
Duplicate (W3G0033-DUP1)	Source: 3	1 23004-03			Prepared & A	iiaiyzeu: U//	03/23				

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123

Project Number: 5025-22-0004

Project Manager: John Rudolph

Reported:

08/05/2023 10:36

Conventional Chemistry/Physical Parameters by APHA/EPN/ASTM without section Spile Source Spile Spile Source Spile	Quality Control Res										(3.	ontinued)
Markin W360033 - SM 2540D (Continued) Dipplicate (W360033 - SM 2540D (Continued) Source: 3F39004 - 05	Conventional Chemistry/Physical Parameters	by APHA/EPA/AST	M Methods	s (Continue	ed)							
Source						Spike	Source		%REC		RPD	
Designation Company	Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
Total Displicate (W3G0117-SM 2540C Source: 3F3012-01 2-01 2-01 Total Displicate (W3G0117-SM 2540C Source: 3F3012-01 2-01 Source: 3F3012	atch: W3G0033 - SM 2540D (Continued)											
Deplicate (W36093-DUP2) Source: 3F30122-01 Source: 3F30122-02 Source: 3F30122-03 Source: 3F30076-03 So	Duplicate (W3G0033-DUP1)	Source: 3	F29004-05			Prepared & A	nalyzed: 07/0	03/23				
Total Dissolved Solids 216 5 mg/l 210 3 10 ***Solid Superied Solids	Total Suspended Solids	90.0		5	mg/l	•	86.7			4	10	
Total Dissolved Solids 216 5 mg/l 210 3 10 ***Solid Superied Solids	Dumlicate (W2C0022 DUD2)	Courses 3	E20122 01			Dramarad & A	nah = adı 07/	12/22				
### Prepared & Analyzed: 07/05/23 Frepared & Analyzed: 07/05	•		F30122-01	5	ma/l	Prepared & A	-	J3/23		3	10	
Blank (W360117-BLK) No	·											
Total Dissolved Solids ND 4.0 10 mg/l m	Batch: W3G0117 - SM 2540C											
C. S. W360117-BS1) Source: 3F30124-04 10 mg/l 824 99 97-103 10 mg/l 824		MB	4.0	40		Prepared & A	nalyzed: 07/0	05/23				
Deplicate (W360117-0UP1) Source: 3F30124-04 Prepared & Analyzed: 07/05/23 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	lotal Dissolved Solids	ND	4.0	10	mg/I							
Properticate (W360117-DUP1) Source: 3F30124-04 Au 10 mg/l 2070 1 10 10 10 10 10 10	LCS (W3G0117-BS1)					Prepared & A	nalyzed: 07/0	05/23				
Total Dissolved Solids 2040 4.0 10 mg/l 2070 1 1 10 Duplicate (W360117-DUP2) Source: \$F29117-12	Total Dissolved Solids	813	4.0	10	mg/l	824		99	97-103			
Total Dissolved Solids 2040 4.0 10 mg/l 2070 1 1 10 Duplicate (W360117-DUP2) Source: \$F29117-12	Duplicate (W3G0117-DUP1)	Source: 3	F30124-04			Prepared & A	nalvzed: 07/0	05/23				
Total Dissolved Solids 3090 4.0 10 mg/l 3050	• •			10	mg/l	eparca or A	-	,		1	10	
Total Dissolved Solids 3090 4.0 10 mg/l 3050												
Blank (W3G1149 - EPA 350.1 Prepared: 07/17/23 Analyzed: 07/21/23 Prepared: 07/21/23	•			10	ma/l	Prepared & A	•	05/23		1	10	
Blank (W3G1149-BLK1)	Iotal Dissolved Colles		4.0	10	mg/i		3030				10	
Matrix Spike (W3G1149-MSD1) Source: 3F29094-03 Ammonia as N 0.253 0.017 0.10 mg/l Prepared: 07/17/23 Analyzed: 07/21/23 Analyzed: 07/26/23 Analyzed: 07/26/	Batch: W3G1149 - EPA 350.1											
Blank (W3G1149-BLK2)	Blank (W3G1149-BLK1)				Pre	pared: 07/17/2	3 Analyzed:	07/21/2	3			
Ammonia as N	Ammonia as N	ND	0.017	0.10	mg/l							
Ammonia as N	Blank (W3G1149-BLK2)				Pre	pared: 07/17/2	3 Analyzed:	07/21/2	3			
Ammonia as N 0.242 0.017 0.10 mg/l 0.250 97 90-110 LCS (W3G1149-B52) Ammonia as N 0.254 0.017 0.10 mg/l 0.250 102 90-110 Matrix Spike (W3G1149-MS1) Ammonia as N 0.354 0.017 0.10 mg/l 0.250 0.106 99 90-110 Matrix Spike (W3G1149-MS2) Ammonia as N 0.253 0.017 0.10 mg/l 0.250 0.106 99 90-110 Matrix Spike (W3G1149-MS2) Ammonia as N 0.253 0.017 0.10 mg/l 0.250 ND 101 90-110 Matrix Spike Dup (W3G1149-MSD1) Ammonia as N 0.356 0.017 0.10 mg/l 0.250 ND 101 90-110 Matrix Spike Dup (W3G1149-MSD1) Ammonia as N 0.356 0.017 0.10 mg/l 0.250 ND 101 90-110 Matrix Spike Dup (W3G1149-MSD2) Ammonia as N 0.356 0.017 0.10 mg/l 0.250 ND 102 90-110 0.5 15 Matrix Spike Dup (W3G1149-MSD2) Ammonia as N 0.254 0.017 0.10 mg/l 0.250 ND 102 90-110 0.5 15 Matrix Spike Dup (W3G1149-MSD2) Ammonia as N 0.254 0.017 0.10 mg/l 0.250 ND 102 90-110 0.5 15 Matrix Spike Dup (W3G1149-MSD2) Ammonia as N 0.254 0.017 0.10 mg/l 0.250 ND 102 90-110 0.4 15 Matrix Spike Dup (W3G1149-MSD2) Ammonia as N 0.065 0.10 mg/l 0.250 ND 102 90-110 0.4 15 Matrix Spike Dup (W3G1149-MSD2) Ammonia as N 0.065 0.10 mg/l 0.250 ND 102 90-110 0.4 15 Matrix Spike Dup (W3G1149-MSD2) Ammonia as N 0.065 0.10 mg/l 0.250 ND 102 90-110 0.4 15 Matrix Spike Dup (W3G1149-MSD2) Ammonia as N 0.065 0.10 mg/l 0.250 ND 102 90-110 0.4 15 Matrix Spike Dup (W3G1149-MSD2) Ammonia as N 0.065 0.10 mg/l 0.250 ND 102 90-110 0.4 15		ND	0.017	0.10		purcu. 07, 17, 2	5 manyzea.	01,21,2	-			
Ammonia as N 0.242 0.017 0.10 mg/l 0.250 97 90-110 LCS (W3G1149-B52) Ammonia as N 0.254 0.017 0.10 mg/l 0.250 102 90-110 Matrix Spike (W3G1149-MS1) Ammonia as N 0.354 0.017 0.10 mg/l 0.250 0.106 99 90-110 Matrix Spike (W3G1149-MS2) Ammonia as N 0.253 0.017 0.10 mg/l 0.250 0.106 99 90-110 Matrix Spike (W3G1149-MS2) Ammonia as N 0.253 0.017 0.10 mg/l 0.250 ND 101 90-110 Matrix Spike Dup (W3G1149-MSD1) Ammonia as N 0.356 0.017 0.10 mg/l 0.250 ND 101 90-110 Matrix Spike Dup (W3G1149-MSD1) Ammonia as N 0.356 0.017 0.10 mg/l 0.250 ND 101 90-110 Matrix Spike Dup (W3G1149-MSD2) Ammonia as N 0.356 0.017 0.10 mg/l 0.250 ND 102 90-110 0.5 15 Matrix Spike Dup (W3G1149-MSD2) Ammonia as N 0.254 0.017 0.10 mg/l 0.250 ND 102 90-110 0.5 15 Matrix Spike Dup (W3G1149-MSD2) Ammonia as N 0.254 0.017 0.10 mg/l 0.250 ND 102 90-110 0.5 15 Matrix Spike Dup (W3G1149-MSD2) Ammonia as N 0.254 0.017 0.10 mg/l 0.250 ND 102 90-110 0.4 15 Matrix Spike Dup (W3G1149-MSD2) Ammonia as N 0.065 0.10 mg/l 0.250 ND 102 90-110 0.4 15 Matrix Spike Dup (W3G1149-MSD2) Ammonia as N 0.065 0.10 mg/l 0.250 ND 102 90-110 0.4 15 Matrix Spike Dup (W3G1149-MSD2) Ammonia as N 0.065 0.10 mg/l 0.250 ND 102 90-110 0.4 15 Matrix Spike Dup (W3G1149-MSD2) Ammonia as N 0.065 0.10 mg/l 0.250 ND 102 90-110 0.4 15 Matrix Spike Dup (W3G1149-MSD2) Ammonia as N 0.065 0.10 mg/l 0.250 ND 102 90-110 0.4 15												
Natrix Spike Dup (W3G1149-MSD1) Source: 3F29094-03 Ammonia as N 0.254 0.017 0.10 Mg/l 0.250 0.102 90-110		0.242	0.017	0.10			3 Analyzed:					
Ammonia as N 0.254 0.017 0.10 mg/l 0.250 102 90-110 Matrix Spike (W3G1149-MS1) Source: 3F29094-03	Allillonia as iv	0.242	0.017	0.10	ilig/i	0.230		31	30-110			
Matrix Spike (W3G1149-MS1) Ammonia as N 0.354 0.017 0.10 Matrix Spike (W3G1149-MS2) Ammonia as N 0.253 0.017 0.10 Matrix Spike (W3G1149-MS2) Ammonia as N 0.253 0.017 0.10 Matrix Spike Dup (W3G1149-MSD1) Ammonia as N 0.356 0.017 0.10 Matrix Spike Dup (W3G1149-MSD1) Ammonia as N 0.356 0.017 0.10 Matrix Spike Dup (W3G1149-MSD1) Ammonia as N 0.356 0.017 0.10 Matrix Spike Dup (W3G1149-MSD1) Ammonia as N 0.356 0.017 0.10 Matrix Spike Dup (W3G1149-MSD2) Ammonia as N 0.356 0.017 0.10 Matrix Spike Dup (W3G1149-MSD2) Ammonia as N 0.254 0.017 0.10 Matrix Spike Dup (W3G1149-MSD2) Ammonia as N 0.254 0.017 0.10 Matrix Spike Dup (W3G1149-MSD2) Ammonia as N 0.254 0.017 0.10 Matrix Spike Dup (W3G1149-MSD2) Ammonia as N 0.254 0.017 0.10 Matrix Spike Dup (W3G1149-MSD2) Ammonia as N 0.254 0.017 0.10 Matrix Spike Dup (W3G1149-MSD2) Ammonia as N 0.254 0.017 0.10 Matrix Spike Dup (W3G1149-MSD2) Ammonia as N 0.254 0.017 0.10 Matrix Spike Dup (W3G1149-MSD2) Ammonia as N 0.254 0.017 0.10 Matrix Spike Dup (W3G1149-MSD2) Ammonia as N 0.254 0.017 0.10 Matrix Spike Dup (W3G1149-MSD2) Ammonia as N 0.254 0.017 0.10 Matrix Spike Dup (W3G1149-MSD2) Ammonia as N 0.254 0.017 0.10 Matrix Spike Dup (W3G1149-MSD2) Ammonia as N 0.250 0.10 Matrix Spike Dup (W3G1149-MSD2) Ammonia as N 0.250 0.10 Matrix Spike Dup (W3G1149-MSD2) Ammonia as N 0.250 0.10 Matrix Spike Dup (W3G1149-MSD2) Ammonia as N 0.250 0.10 Matrix Spike Dup (W3G1149-MSD2) Ammonia as N 0.250 0.10 Matrix Spike Dup (W3G1149-MSD2) Ammonia as N 0.250 0.10 Matrix Spike Dup (W3G1149-MSD2) Ammonia as N 0.250 0.10 Matrix Spike Dup (W3G1149-MSD2) Ammonia as N 0.250 0.10 Matrix Spike Dup (W3G1149-MSD2) Ammonia as N 0.250 0.10 0.10 0.250 0.10 0.10 0.250 0.10 0.10 0.250 0.10 0.250 0.10 0.10 0.250 0.							3 Analyzed:					
Ammonia as N 0.354 0.017 0.10 mg/l 0.250 0.106 99 90-110 Matrix Spike (W3G1149-MS2) Source: 3F30076-01 Ammonia as N Prepared: 07/17/23 Prepared: 07/17/23 Prepared: 07/17/23 Prepared: 07/17/23 Prepared: 07/21/23 Prepared: 07/20/23 Prepared: 07/20/23 Prepared: 07/20/23 Prepared: 07/26/23 Prepared: 07/26/23 Prepared: 07/20/23 Prepared: 07/26/23 Prepared: 07/26/23 Prepared: 07/20/23 Prepared: 07/20/23 Prepared: 07/26/23 Prepared: 07/26/23 Prepared: 07/26/23 Prepared: 07/20/23 Prepared: 07/26/23 Prepared: 07/26/23 Prepared: 07/20/23 Prepared: 07/26/23 Prepared:	Ammonia as N	0.254	0.017	0.10	mg/l	0.250		102	90-110			
Matrix Spike (W3G1149-MS2) Ammonia as N 0.253 0.017 0.10 mg/l 0.250 ND 101 90-110 Matrix Spike Dup (W3G1149-MSD1) Ammonia as N 0.356 0.017 0.10 mg/l 0.250 ND 101 90-110 Matrix Spike Dup (W3G1149-MSD1) Ammonia as N 0.356 0.017 0.10 mg/l 0.250 0.106 100 90-110 0.5 15 Matrix Spike Dup (W3G1149-MSD2) Ammonia as N 0.254 0.017 0.10 mg/l 0.250 ND 102 90-110 0.4 15 Matrix Spike Dup (W3G1149-MSD2) Ammonia as N 0.254 0.017 0.10 mg/l 0.250 ND 102 90-110 0.4 15 Matrix Spike Dup (W3G131-EPA 351.2 Blank (W3G1531-BLK1) TKN ND 0.065 0.10 mg/l Prepared: 07/20/23 Analyzed: 07/26/23 TKN ND 0.065 0.10 mg/l LCS (W3G1531-BS1) TKN 0.960 0.065 0.10 mg/l 1.00 96 90-110	Matrix Spike (W3G1149-MS1)	Source: 3	F29094-03		Pre	pared: 07/17/2	3 Analyzed:	07/21/2	3			
Ammonia as N 0.253 0.017 0.10 mg/l 0.250 ND 101 90-110 Matrix Spike Dup (W3G1149-MSD1) Source: 3F29094-03 mg/l 0.250 0.106 100 90-110 0.5 15 Matrix Spike Dup (W3G1149-MSD2) Source: 3F30076-01 Prepared: 07/17/23 Analyzed: 07/21/23 Analyzed: 07/26/23 Analyzed:	Ammonia as N	0.354	0.017	0.10	mg/l	0.250	0.106	99	90-110			
Ammonia as N 0.253 0.017 0.10 mg/l 0.250 ND 101 90-110 Matrix Spike Dup (W3G1149-MSD1) Source: 3F29094-03 mg/l 0.250 0.106 100 90-110 0.5 15 Matrix Spike Dup (W3G1149-MSD2) Source: 3F30076-01 Prepared: 07/17/23 Analyzed: 07/21/23 Analyzed: 07/26/23 Analyzed:	Matrix Smiles (M2-S1140 MS2)	Courses 2	E20076 01		Dwa	marradi 07/17/2	2 Amalumadu	07/21/2	,			
Matrix Spike Dup (W3G1149-MSD1) Ammonia as N 0.356 0.017 0.10 mg/l 0.250 0.106 100 90-110 0.5 15 Matrix Spike Dup (W3G1149-MSD2) Source: 3F30076-01 Prepared: 07/17/23 Analyzed: 07/21/23 Ammonia as N 0.254 0.017 0.10 mg/l 0.250 ND 102 90-110 0.4 15 Matrix Spike Dup (W3G1149-MSD2) Ammonia as N 0.254 0.017 0.10 mg/l 0.250 ND 102 90-110 0.4 15 Matrix Spike Dup (W3G1149-MSD2) Ammonia as N 0.254 0.017 0.10 mg/l 0.250 ND 102 90-110 0.4 15 Matrix Spike Dup (W3G1149-MSD2) Analyzed: 07/21/23 Frepared: 07/20/23 Analyzed: 07/26/23 TKN ND 0.065 0.10 mg/l LCS (W3G1531-BLK2) TKN 0.960 0.065 0.10 mg/l 1.00 96 90-110	-			0.10			-					
Ammonia as N					-							
Matrix Spike Dup (W3G1149-MSD2) Ammonia as N 0.254 0.017 0.10 mg/l Ammonia as N 0.250 ND 102 90-110 0.4 15 Match: W3G1531 - EPA 351.2 Blank (W3G1531-BLK1) TKN ND 0.065 0.10 mg/l LCS (W3G1531-BS1) TKN 0.960 0.065 0.10 mg/l Prepared: 07/20/23 Analyzed: 07/26/23 Prepared: 07/20/23 Analyzed: 07/26/23 Prepared: 07/20/23 Analyzed: 07/26/23 Prepared: 07/20/23 Analyzed: 07/26/23 Matrix Spike Dup (W3G1149-MSD2) Prepared: 07/20/23 Analyzed: 07/26/23 Prepared: 07/20/23 Analyzed: 07/26/23 Matrix Spike Dup (W3G1149-MSD2) Prepared: 07/20/23 Analyzed: 07/26/23 Matrix Spike Dup (W3G1149-MSD2) Prepared: 07/20/23 Analyzed: 07/26/23 Matrix Spike Dup (W3G1149-MSD2) Matrix Spike Dup (W3G1149-MSD2) Prepared: 07/20/23 Analyzed: 07/26/23 Matrix Spike Dup (W3G1149-MSD2) Matrix Spike Dup (W3G1149-MSD2) Matrix Spike Dup (W3G1149-MSD2) Prepared: 07/20/23 Analyzed: 07/26/23 Matrix Spike Dup (W3G1149-MSD2) MD 0.250 ND 102 90-110 0.4 15 Matrix Spike Dup (W3G1149-MSD2) MD 0.250 ND 102 90-110 0.4 15 Matrix Spike Dup (W3G1149-MSD2) MD 0.250 ND 102 90-110 0.4 15 Matrix Spike Dup (W3G1149-MSD2) MD 0.250 ND 102 90-110 0.4 15 Matrix Spike Dup (W3G1531-BLK2) MD 0.250 ND 102 90-110 0.4 15 Matrix Spike Dup (W3G1531-BLK2) MD 0.250 ND 102 90-110 0.4 15 Matrix Spike Dup (W3G1531-BLK2) MD 0.250 ND 102 90-110 0.4 15 Matrix Spike Dup (W3G1531-BLK2) MD 0.250 ND 102 90-110 0.4 15 Matrix Spike Dup (W3G1531-BLK2) MD 0.250 ND 102 90-110 0.4 15 MD 0.250 ND 102				0.40						0.5	45	
Ammonia as N	Ammonia as N	0.356	0.017	0.10	mg/I	0.250	0.106	100	90-110	0.5	15	
Blank (W3G1531-BLK1) TKN ND 0.065 0.10 mg/l Blank (W3G1531-BLK2) TKN ND 0.065 0.10 mg/l CCS (W3G1531-BS1) TKN 0.960 0.065 0.10 mg/l Prepared: 07/20/23 Analyzed: 07/26/23 TKN 9Prepared: 07/20/23 Analyzed: 07/26/23 TKN 9Prepared: 07/20/23 Analyzed: 07/26/23 TKN 0.960 0.065 0.10 mg/l 1.00 96 90-110	Matrix Spike Dup (W3G1149-MSD2)	Source: 3	F30076-01		Pre	pared: 07/17/2	3 Analyzed:	07/21/2	3			
Prepared: 07/20/23 Analyzed: 07/26/23 Analyze	Ammonia as N	0.254	0.017	0.10	mg/l	0.250	ND	102	90-110	0.4	15	
Prepared: 07/20/23 Analyzed: 07/26/23 Analyze	Batch: W3G1531 - EPA 351.2											
TKN ND 0.065 0.10 mg/l Blank (W3G1531-BLK2) Prepared: 07/20/23 Analyzed: 07/26/23 TKN ND 0.065 0.10 mg/l LCS (W3G1531-BS1) Prepared: 07/20/23 Analyzed: 07/26/23 TKN 0.960 0.065 0.10 mg/l 1.00 96 90-110					D.	narod: 07/20/2	2 Apple	07/26/2	,			
Blank (W3G1531-BLK2) Prepared: 07/20/23 Analyzed: 07/26/23 TKN ND 0.065 0.10 mg/l LCS (W3G1531-BS1) Prepared: 07/20/23 Analyzed: 07/26/23 TKN 0.960 0.065 0.10 mg/l 1.00 96 90-110		ND	0.065	0.10		pareu: 01/20/2	o Analyzed:	01/20/2				
TKN ND 0.065 0.10 mg/l LCS (W3G1531-BS1) Prepared: 07/20/23 Analyzed: 07/26/23 TKN 0.960 0.065 0.10 mg/l 1.00 96 90-110		5			_							
LCS (W3G1531-BS1) TKN			0.005	0.40		pared: 07/20/2	3 Analyzed:	07/26/23	3			
TKN	IKN	· · · · · · · · ND	0.065	0.10	mg/l							
	LCS (W3G1531-BS1)				Pre	pared: 07/20/2	3 Analyzed:	07/26/2	3			
ICS (M2C1521 BS2)		0.960	0.065	0.10			-					
	LCC (M2C1E21 BC2)				D	marrad, 07/20/2	2 Amal	07/26/2	,			

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 **Project Number:** 5025-22-0004

Project Manager: John Rudolph

Reported:

08/05/2023 10:36

Quality Control Results

Conventional Chemistry/Physical Parameters	by APHA/EPA/AST	M Methods	(Continue	d)							
					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
atch: W3G1531 - EPA 351.2 (Continued)											
LCS (W3G1531-BS2)				Pre	oared: 07/20/2	3 Analyzed	: 07/26/2	3			
TKN	0.960	0.065	0.10	mg/l	1.00		96	90-110			
Duplicate (W3G1531-DUP1)	Source: 3	F29020-01		Pre	pared: 07/20/2	3 Analyzed	: 07/26/2	3			
TKN	0.448	0.065	0.10	mg/l		0.441			2	10	
Matrix Spike (W3G1531-MS1)	Source: 3	F29004-05		Pre	pared: 07/20/2	3 Analyzed	: 07/26/2	3			
TKN	4.47	0.065	0.10	mg/l	1.00	3.31	116	90-110			MS-0
Matrix Spike (W3G1531-MS2)	Source: 3	F29118-03		Pre	pared: 07/20/2	3 Analyzed	: 07/26/2	3			
TKN	0.959	0.065	0.10	mg/l	1.00	ND	96	90-110			
Matrix Spike Dup (W3G1531-MSD1)	Source: 3	F29004-05		Pre	pared: 07/20/2	3 Analyzed	: 07/26/2	3			
TKN	4.67	0.065	0.10	mg/l	1.00	3.31	137	90-110	4	10	MS-0
Matrix Spike Dup (W3G1531-MSD2)	Source: 3	F29118-03		Pre	pared: 07/20/2	3 Analyzed	: 07/26/2	3			
TKN	0.921	0.065	0.10	mg/l	1.00	ND	92	90-110	4	10	

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 **Project Number:** 5025-22-0004

Project Manager: John Rudolph

Reported:

08/05/2023 10:36

Quality Control Results

Metals by EPA 200 Series Methods											
					Spike	Source		%REC		RPD	
•	esult	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualif
atch: W3G0933 - EPA 200.7				_	1 07/40/6			_			
Blank (W3G0933-BLK1) Calcium, Dissolved	ND	0.160	0.500	mg/l	oared: 07/12/2	3 Analyzed:	07/26/2	3			
Calcium, Total	ND	0.0736	0.500	mg/l							
Magnesium, Total	ND	0.0390	0.500	mg/l							
•	ND	0.018	0.050	mg/l							
Phosphorus, Total	ND	0.018	0.050	mg/l							
LCS (W3G0933-BS1)				Droi	pared: 07/12/2	2 Analyzod	07/26/2	5			
	48.9	0.160	0.500	mg/l	50.2	.5 Analyzeu:	97	85-115			
Calcium, Total	48.9	0.0736	0.500	mg/l	50.2		97	85-115			
Magnesium, Total	48.0	0.0390	0.500	mg/l	50.2		96	85-115			
Phosphorus, Dissolved	2.11	0.018	0.050	mg/l	2.00		105	85-115			
Phosphorus, Total	2.11	0.018	0.050	mg/l	2.00		105	85-115			
Matrix Spike (W3G0933-MS1) Sou	ırce: 3	F19027-01		Prei	pared: 07/12/2	?3 Analyzed:	07/26/2	3			
	88.3	0.160	0.500	mg/l	50.2	41.4	93	70-130			
Calcium, Total	88.3	0.0736	0.500	mg/l	50.2	41.4	93	70-130			
Magnesium, Total	66.3	0.0390	0.500	mg/l	50.2	19.2	94	70-130			
Phosphorus, Dissolved	2.41	0.018	0.050	mg/l	2.00	0.336	104	70-130			
Phosphorus, Total	2.41	0.018	0.050	mg/l	2.00	0.336	104	70-130			
Matrix Spike (W3G0933-MS2) Sou	ırce: 3	F30016-01		Pre	pared: 07/12/2	3 Analyzed:	07/26/2	3			
Calcium, Dissolved	116	0.160	0.500	mg/l	50.2	70.0	91	70-130			
Calcium, Total	116	0.0736	0.500	mg/l	50.2	70.0	91	70-130			
Magnesium, Total	60.4	0.0390	0.500	mg/l	50.2	13.8	93	70-130			
Phosphorus, Dissolved	2.08	0.018	0.050	mg/l	2.00	ND	104	70-130			
Phosphorus, Total	2.08	0.018	0.050	mg/l	2.00	ND	104	70-130			
• • •		F19027-01		Pre	oared: 07/12/2	3 Analyzed:	07/26/2	3			
•	88.7	0.160	0.500	mg/l	50.2	41.4	94	70-130	0.5	30	
,	88.7	0.0736	0.500	mg/l	50.2	41.4	94	70-130	0.5	30	
,	66.6	0.0390	0.500	mg/l	50.2	19.2	94	70-130	0.5	30	
,	2.42	0.018	0.050	mg/l	2.00	0.336	104	70-130	0.04	30	
Phosphorus, Total	2.42	0.018	0.050	mg/l	2.00	0.336	104	70-130	0.04	30	
		F30016-01	0.500		oared: 07/12/2					00	
Calcium, Dissolved		0.160	0.500	mg/l	50.2	70.0	95	70-130	2	30	
Calcium, Total		0.0736	0.500	mg/l	50.2	70.0	95	70-130	2	30	
3 ,	61.4	0.0390	0.500	mg/l	50.2	13.8 ND	95 105	70-130	2	30	
•	2.10 2.10	0.018	0.050	mg/l	2.00	ND	105	70-130 70-130	1	30	
Phosphorus, Total	Z. IU	0.018	0.050	mg/l	2.00	ND	105	70-130	1	30	
atch: W3G0934 - EPA 200.8											
Blank (W3G0934-BLK1)	ND	4.4	20	-	oared: 07/13/2	3 Analyzed:	07/14/2	3			
Aluminum, Dissolved	ND	4.4	20	ug/l							

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123

Project Number: 5025-22-0004

Project Manager: John Rudolph

Reported:

08/05/2023 10:36

Quality Control Results

Metals by EPA 200 Series Methods (Continued)											
Analyte	Result	MDL	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifi
atch: W3G0934 - EPA 200.8 (Continued)											
Blank (W3G0934-BLK1)				Pre	pared: 07/13/2	23 Analyzed:	07/14/23	3			
Aluminum, Total	ND	4.4	20	ug/l		•					
Copper, Dissolved	ND	0.23	0.50	ug/l							
Copper, Total	ND	0.23	0.50	ug/l							
Iron, Dissolved	ND	3.9	20	ug/l							
Iron, Total	ND	3.9	20	ug/l							
Lead, Dissolved	ND	0.083	0.20	ug/l							
Lead, Total	ND	0.083	0.20	ug/l							
Manganese, Dissolved	ND	0.11	1.0	ug/l							
Manganese, Total	ND	0.23	1.0	ug/l							
Nickel, Dissolved	ND	0.16	2.0	ug/l							
Nickel, Total	ND	0.40	2.0	ug/l							
Selenium, Dissolved	ND	0.067	0.40	ug/l							
Selenium, Total	ND	0.067	0.40	ug/l							
Zinc, Dissolved	ND	1.7	10	ug/l							
Zinc, Total	ND	1.7	10	ug/l							
LCS (W3G0934-BS1)				Pro	pared: 07/13/2	23 Analyzed	. 07/14/2	ł			
Aluminum, Dissolved	55.0	4.4	20	ug/l	50.0	.5 Analyzea	110	85-115			
Aluminum, Total	55.0	4.4	20	ug/l	50.0		110	85-115			
Copper, Dissolved	50.9	0.23	0.50	ug/l	50.0		102	85-115			
Copper, Total	50.9	0.23	0.50	ug/l	50.0		102	85-115			
Iron, Dissolved	- 1120	3.9	20	ug/l	1050		107	85-115			
Iron, Total	- 1120	3.9	20	ug/l	1050		107	85-115			
Lead, Dissolved	49.8	0.083	0.20	ug/l	50.0		99	85-115			
Lead, Total	49.8	0.083	0.20	ug/l	50.0		99	85-115			
Manganese, Dissolved	- 50.3	0.11	1.0	ug/l	50.0		100	85-115			
Manganese, Total		0.23	1.0	ug/l	50.0		100	85-115			
Nickel, Dissolved		0.16	2.0	ug/l	50.0		101	85-115			
Nickel, Total	50.4	0.40	2.0	ug/l	50.0		101	85-115			
Selenium, Dissolved		0.067	0.40	ug/l	50.0		100	85-115			
Selenium, Total		0.067	0.40	ug/l	50.0		100	85-115			
Zinc, Dissolved		1.7	10	ug/l	50.0		101	85-115			
Zinc, Total		1.7	10	ug/l	50.0		101	85-115			
,				-		12 Ameliane					
Matrix Spike (W3G0934-MS1) S Aluminum, Total	ource: 3 - 3470	F29118-01 4.4	20	ug/l	pared: 07/13/2 50.0	3170	587 587	70-130			MS-
Copper, Total		0.23	0.50	ug/l	50.0	5.66	95	70-130			
Iron, Total		3.9	20	ug/l	1050	3940	103	70-130			
Lead, Total		0.083	0.20	ug/l	50.0	3.60	101	70-130			
Manganese, Total		0.23	1.0	ug/l	50.0	385	104	70-130			
Nickel, Total		0.40	2.0	ug/l	50.0	3.17	95	70-130			
F29116	- 3.0			3' '	- 3.0	2	30				Page 14 o

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 **Project Number:** 5025-22-0004

Project Manager: John Rudolph

Reported:

08/05/2023 10:36

Quality Control Results

Metals by EPA 200 Series Methods (Continued)											
					Spike	Source		%REC		RPD	
Analyte Resu	ılt	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
atch: W3G0934 - EPA 200.8 (Continued)											
• • •		29118-01			pared: 07/13/2	-					
Selenium, Total 50.	.5	0.067	0.40	ug/l	50.0	1.92	97	70-130			
Zinc, Total 71.	.7	1.7	10	ug/l	50.0	23.8	96	70-130			
	e: 3G	06049-01		Prej	pared: 07/13/2	23 Analyzed:	07/14/2	3			
Aluminum, Total 52.	.7	4.4	20	ug/l	50.0	ND	105	70-130			
Copper, Total 50.	.8	0.23	0.50	ug/l	50.0	ND	102	70-130			
Iron, Total 113	30	3.9	20	ug/l	1050	ND	108	70-130			
Lead, Total 50	.1	0.083	0.20	ug/l	50.0	ND	100	70-130			
Manganese, Total 50.	.9	0.23	1.0	ug/l	50.0	ND	102	70-130			
Nickel, Total 51.	.1	0.40	2.0	ug/l	50.0	ND	102	70-130			
Selenium, Total 49.	.9	0.067	0.40	ug/l	50.0	ND	100	70-130			
Zinc, Total 50.	.4	1.7	10	ug/l	50.0	ND	101	70-130			
Matrix Spike Dup (W3G0934-MSD1) Source	e: 3F	29118-01		Prei	pared: 07/13/2	23 Analyzed:	07/14/2	3			
Aluminum, Total 334		4.4	20	ug/l	50.0	3170	341	70-130	4	30	MS-0
Copper, Total 53.	.2	0.23	0.50	ug/l	50.0	5.66	95	70-130	0.3	30	
Iron, Total 510	00	3.9	20	ug/l	1050	3940	111	70-130	2	30	
Lead, Total 53.	.5	0.083	0.20	ug/l	50.0	3.60	100	70-130	0.8	30	
Manganese, Total 43	31	0.23	1.0	ug/l	50.0	385	91	70-130	1	30	
Nickel, Total50	.3	0.40	2.0	ug/l	50.0	3.17	94	70-130	1	30	
Selenium, Total	.4	0.067	0.40	ug/l	50.0	1.92	97	70-130	0.3	30	
Zinc, Total	.1	1.7	10	ug/l	50.0	23.8	97	70-130	0.6	30	
Matrix Spike Dup (W3G0934-MSD2) Source	a. 2C	06049-01		Duo	pared: 07/13/2)	07/14/2				
Matrix Spike Dup (W3G0934-MSD2) Source Aluminum, Total 53.		4.4	20	ug/l	50.0	ND	106	70-130	0.5	30	
Copper, Total 51.	.0	0.23	0.50	ug/l	50.0	ND	102	70-130	0.3	30	
Iron, Total	10	3.9	20	ug/l	1050	ND	108	70-130	0.4	30	
Lead, Total	.2	0.083	0.20	ug/l	50.0	ND	100	70-130	0.2	30	
Manganese, Total 50.		0.23	1.0	ug/l	50.0	ND	102	70-130	0.1	30	
Nickel, Total 50.		0.40	2.0	ug/l	50.0	ND	101	70-130	0.9	30	
Selenium, Total 49.		0.067	0.40	ug/l	50.0	ND	99	70-130	0.7	30	
Zinc, Total 49.		1.7	10	ug/l	50.0	ND	98	70-130	2	30	

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 **Project Number:** 5025-22-0004

Project Manager: John Rudolph

Reported:

08/05/2023 10:36

Quality Control Results

Analyte Result MDL MRL Units Level h: W3G0255 - EPA 625.1 mk (W3G0255 - BLK1)	Source Result	%REC Limits 07/14/23	RPD RPD Limit	Qualifi
## W3G0255 - EPA 625.1 ## (W3G0255 - BLK1) ## (W3G0255 - BLK1) ## (W3G0255 - BLK1) ## (W4Hylnaphthalene ND 0.024 0.10 ug/l				Qualif
-Methylnaphthalene	06/23 Analyzed: 0	07/14/23		
-Methylnaphthalene				
ND 0.028 0.10 ug/l				
ND 0.033 0.10 ug/l				
Anthracene ND 0.025 0.10 ug/l services of the control of the contr				
Senzo (a) anthracene ND 0.051 0.10 ug/l				
Senzo (a) pyrene ND 0.051 0.10 ug/l				
Senzo (b) fluoranthene ND 0.074 0.10 ug/l				
Senzo (g,h,i) perylene				
Senzo (k) fluoranthene				
ND 0.074 0.10 ug/l				
Dibenzo (a,h) anthracene				
Cluoranthene ND 0.039 0.10 ug/l				
ND 0.029 0.10 ug/l				
Indeno (1,2,3-cd) pyrene ND 0.065 0.10 ug/l Paphthalene ND 0.026 0.10 ug/l Phenanthrene ND 0.029 0.10 ug/l Pyrene ND 0.040 0.10 ug/l Preparete(s)				
Alaphthalene				
Phenanthrene ND 0.029 0.10 ug/l Pyrene ND 0.040 0.10 ug/l 20.0 Introbenzene-d5 10.6 ug/l 1.00 Introbenzene-d5 10.6 ug/l 1.00 Introbenzene-d5 10.6 ug/l 1.00 Introbenzene-d5 ug/l 20.0 Introbenzene-d5 ug/l 20.0				
Pyrene ND 0.040 0.10 ug/l Pogate(s) P-Filorobiphenyl 9.64 ug/l 20.0 Polytrobenzene-d5 10.6 ug/l 20.0 Prephenyl-d14 17.4 ug/l 20.0 Prephenyl-d14 17.4 ug/l 20.0 Prephenyl-d14 0.519 0.024 0.10 ug/l 1.00 P-Methylnaphthalene 0.521 0.026 0.10 ug/l 1.00 P-Methylnaphthalene 0.596 0.028 0.10 ug/l 1.00 P-Methylnaphthalene 0.590 0.033 0.10 ug/l 1.00 P-Methylnaphthalene 0.590 0.033 0.10 ug/l 1.00 P-Methylnaphthalene 0.590 0.031 0.10 ug/l 1.00 P-Methylnaphthalene 0.590 0.033 0.10 ug/l 1.00 P-Methylnaphthalene 0.590 0.033 0.10 ug/l 1.00 P-Methylnaphthalene 0.590 0.031 0.10 ug/l 1.00 P-Methylnaphthalene 0.590 0.031 0.10 ug/l 1.00 P-Methylnaphthalene 0.590 0.033 0.10 ug/l 1.00 P-Methylnaphthalene 0.590 0.051 0.10 ug/l 1.00 P-Methylnaphthalene 0.590 0.051 0.10 ug/l 1.00 P-Methylnaphthalene 0.590 0.050 0.10 ug/l 1.00				
Prepared: 9.64				
Pre-Pluorobiphenyl 9.64 ug/l 20.0				
Nitrobenzene-d5 10.6 ug/l 20.0 vg/l 20.0 vg/		48 22-120		
Terphenyl-d14		53 47-120		
No. Prepared: 07/9 O.024 O.10 Ug/1 O.025 O.028 O.10 Ug/1 O.026 O.028 O.028 O.028 O.028 O.028 O.10 Ug/1 O.026 O.028 O.028 O.028 O.028 O.028 O.028 O.028 O.028 O.028 O.029 O.028 O.028 O.028 O.029 O.028 O.028 O.029 O.029 O.029 O.028 O.029 O.028 O.029 O.029 O.029 O.029 O.028 O.029 O.028 O.029 O.029 O.029 O.028 O.029 O.028 O.029 O.028 O.029 O.029 O.029 O.029 O.029 O.028 O.029 O.028 O.029 O.029 O.029 O.029 O.028 O.029 O.028 O.029 O.028 O.029 O		87 44-129		
A-Methylnaphthalene 0.519 0.024 0.10 ug/l 1.00 R-Methylnaphthalene 0.521 0.026 0.10 ug/l 1.00 Acenaphthene 0.596 0.028 0.10 ug/l 1.00 Acenaphthylene 0.590 0.033 0.10 ug/l 1.00 Anthracene 0.674 0.025 0.10 ug/l 1.00 Benzo (a) anthracene 0.671 0.051 0.10 ug/l 1.00 Benzo (b) fluoranthene 0.671 0.051 0.10 ug/l 1.00 Benzo (g,h,i) perylene 0.574 0.050 0.10 ug/l 1.00 Benzo (k) fluoranthene 0.745 0.059 0.10 ug/l 1.00 Chrysene 0.776 0.074 0.10 ug/l 1.00				
2-Methylnaphthalene 0.521 0.026 0.10 ug/l 1.00 Acenaphthene 0.596 0.028 0.10 ug/l 1.00 Acenaphthylene 0.590 0.033 0.10 ug/l 1.00 Anthracene 0.674 0.025 0.10 ug/l 1.00 Anthracene 0.674 0.025 0.10 ug/l 1.00 Benzo (a) anthracene 0.723 0.051 0.10 ug/l 1.00 Benzo (b) fluoranthene 0.736 0.074 0.10 ug/l 1.00 Benzo (g,h,i) perylene 0.574 0.050 0.10 ug/l 1.00 Benzo (k) fluoranthene 0.745 0.059 0.10 ug/l 1.00 Benzo (k) fluoranthene 0.776 0.074 0.10 ug/l 1.00 Benzo (k) fluoranthene 0.0776 0.074 0.10 ug/l 1.00 Ug/l 1.00 Benzo (k) fluoranthene 0.0776 0.074 0.10 ug/l 1.00 Ug/l	16/23 Analyzed: 0	52 0-200		
Acenaphthene 0.596 0.028 0.10 ug/l 1.00 Acenaphthylene 0.590 0.033 0.10 ug/l 1.00 Anthracene 0.674 0.025 0.10 ug/l 1.00 Benzo (a) anthracene 0.723 0.051 0.10 ug/l 1.00 Benzo (b) fluoranthene 0.736 0.074 0.10 ug/l 1.00 Benzo (g,h,i) perylene 0.574 0.050 0.10 ug/l 1.00 Benzo (k) fluoranthene 0.745 0.059 0.10 ug/l 1.00 Chrysene 0.776 0.074 0.10 ug/l 1.00		52 0-200		
Acenaphthylene 0.590 0.033 0.10 ug/l 1.00 Anthracene 0.674 0.025 0.10 ug/l 1.00 Benzo (a) anthracene 0.723 0.051 0.10 ug/l 1.00 Benzo (a) pyrene 0.671 0.051 0.10 ug/l 1.00 Benzo (b) fluoranthene 0.736 0.074 0.10 ug/l 1.00 Benzo (g,h,i) perylene 0.574 0.050 0.10 ug/l 1.00 Benzo (k) fluoranthene 0.745 0.059 0.10 ug/l 1.00 Chrysene 0.776 0.074 0.10 ug/l 1.00		60 60-132		
Anthracene 0.674 0.025 0.10 ug/l 1.00 Benzo (a) anthracene 0.723 0.051 0.10 ug/l 1.00 Benzo (a) pyrene 0.671 0.051 0.10 ug/l 1.00 Benzo (b) fluoranthene 0.736 0.074 0.10 ug/l 1.00 Benzo (g,h,i) perylene 0.574 0.050 0.10 ug/l 1.00 Benzo (k) fluoranthene 0.745 0.059 0.10 ug/l 1.00 Chrysene 0.776 0.074 0.10 ug/l 1.00		59 54-126		
Benzo (a) anthracene 0.723 0.051 0.10 ug/l 1.00 Benzo (a) pyrene 0.671 0.051 0.10 ug/l 1.00 Benzo (b) fluoranthene 0.736 0.074 0.10 ug/l 1.00 Benzo (g,h,i) perylene 0.574 0.050 0.10 ug/l 1.00 Benzo (k) fluoranthene 0.745 0.059 0.10 ug/l 1.00 Chrysene 0.776 0.074 0.10 ug/l 1.00		67 43-120		
Benzo (a) pyrene 0.671 0.051 0.10 ug/l 1.00 Benzo (b) fluoranthene 0.736 0.074 0.10 ug/l 1.00 Benzo (g,h,i) perylene 0.574 0.050 0.10 ug/l 1.00 Benzo (k) fluoranthene 0.745 0.059 0.10 ug/l 1.00 Chrysene 0.776 0.074 0.10 ug/l 1.00		72 42-133		
Benzo (b) fluoranthene 0.736 0.074 0.10 ug/l 1.00 Benzo (g,h,i) perylene 0.574 0.050 0.10 ug/l 1.00 Benzo (k) fluoranthene 0.745 0.059 0.10 ug/l 1.00 Chrysene 0.776 0.074 0.10 ug/l 1.00		67 32-148		
Benzo (g,h,i) perylene 0.574 0.050 0.10 ug/l 1.00 Benzo (k) fluoranthene 0.745 0.059 0.10 ug/l 1.00 Chrysene 0.776 0.074 0.10 ug/l 1.00		74 42-140		AN
Benzo (k) fluoranthene 0.745 0.059 0.10 ug/l 1.00 Chrysene 0.776 0.074 0.10 ug/l 1.00		57 0.1-195		
Chrysene 0.776 0.074 0.10 ug/l 1.00		74 25-146		AN
,		78 44-140		7 41 4
		53 0.1-200		
Fluoranthene		81 43-121		
Fluorene		63 70-120		Q-N
ndeno (1,2,3-cd) pyrene 0.533 0.065 0.10 ug/l 1.00		53 0.1-151		Q-1
Naphthalene 0.528 0.026 0.10 ug/l 1.00		53 36-120		
, 3.525 5.525 5.10 dg/. 1.00				

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 **Project Number:** 5025-22-0004

Project Manager: John Rudolph

Reported:

08/05/2023 10:36

Quality Control Results

Semivolatile Organics - Low Level by GC/MS SIM Mod	e (Contin	iued)									
					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
tch: W3G0255 - EPA 625.1 (Continued)											
LCS (W3G0255-BS1)				Pre	pared: 07/06/2	23 Analyzed: 07	7/14/23	3			
Phenanthrene	0.669	0.029	0.10	ug/l	1.00		67	65-120			
Pyrene		0.040	0.10	ug/l	1.00		79	70-120			
iurrogate(s) 2-Fluorobiphenyl				ug/l	5.00		58	22-120			
Nitrobenzene-d5				ug/l	5.00		54	47-120			
Terphenyl-d14				•	5.00		71	44-129			
rerprientyi-a14	3.37			ug/l	5.00		/ /	44-129			
.CS Dup (W3G0255-BSD1)						23 Analyzed: 07					
1-Methylnaphthalene	0.424	0.024	0.10	ug/l	1.00		42	0-200	20	200	
2-Methylnaphthalene	****	0.026	0.10	ug/l	1.00		42	0-200	21	200	
Acenaphthene		0.028	0.10	ug/l	1.00		54	60-132	10	30	BS-
Acenaphthylene		0.033	0.10	ug/l	1.00		52	54-126	14	30	BS-
Anthracene	0.770	0.025	0.10	ug/l	1.00		77	43-120	13	30	
Benzo (a) anthracene		0.051	0.10	ug/l	1.00		75	42-133	4	30	
Benzo (a) pyrene		0.051	0.10	ug/l	1.00		59	32-148	12	30	
Benzo (b) fluoranthene	0.725	0.074	0.10	ug/l	1.00		73	42-140	1	30	AN
Benzo (g,h,i) perylene		0.050	0.10	ug/l	1.00		30	0.1-195	63	30	Q-
Benzo (k) fluoranthene	0.589	0.059	0.10	ug/l	1.00		59	25-146	23	30	AN
Chrysene	0.716	0.074	0.10	ug/l	1.00		72	44-140	8	30	
Dibenzo (a,h) anthracene	0.258	0.081	0.10	ug/l	1.00		26	0.1-200	69	30	Q-
Fluoranthene	0.903	0.039	0.10	ug/l	1.00		90	43-121	11	30	
Fluorene	0.624	0.029	0.10	ug/l	1.00		62	70-120	8.0	30	BS-
Indeno (1,2,3-cd) pyrene	0.420	0.065	0.10	ug/l	1.00		42	0.1-151	24	30	
Naphthalene	0.424	0.026	0.10	ug/l	1.00		42	36-120	22	30	
Phenanthrene	0.776	0.029	0.10	ug/l	1.00		78	65-120	15	30	
Pyrene · · · · · · · · · · · · · · · · · ·	0.902	0.040	0.10	ug/l	1.00		90	70-120	13	30	
ōurrogate(s)											
2-Fluorobiphenyl				ug/l	5.00		49	22-120			
Nitrobenzene-d5	2.04			ug/l	5.00		41	47-120			S

FINAL REPORT

WSP USA E&I Inc. - San Diego 9177 Sky Park Court, Ste A San Diego, CA 92123 **Project Number:** 5025-22-0004

Project Manager: John Rudolph

Reported:

08/05/2023 10:36

Notes and Definitions

item	Definition
AN-IP	Sample results for structural isomers may have contribution from their isomeric pair.
BS-04	The recovery of this analyte in LCS or LCSD was outside control limit. Sample was accepted based on the remaining LCS, LCSD or LCS-LL.
Н	Holding time was exceeded
J	Estimated conc. detected <mrl and="">MDL.</mrl>
MS-02	The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte inherent in the sample.
ND	Not Detected
Q-12	The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on the percent recoveries and/or other acceptable QC data.
Q-ME	Acceptable QC with marginal exceedance
S-11	Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.
%REC	Percent Recovery
Dil	Dilution
MDL	Method Detection Limit
MRL	The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. The MRL is also known as Limit of Quantitation (LOQ)
ND	NOT DETECTED at or above the Method Reporting Limit (MRL). If Method Detection Limit (MDL) is reported, then ND means not detected at or above the MDL.
RPD	Relative Percent Difference
Source	Sample that was matrix spiked or duplicated.

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

All results are expressed on wet weight basis unless otherwise specified.

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

3F29116

\\ \ \}															Со	ntr	ol i	Nun	nbe	r:			
I I			Cł	าลเ	n c	of (Cus	toc	yk						Date	e: 6/29	9/23				Pag	ge: 1	of 1
Project Manager: John Rudolph	phone: 858-243-8158	Bill To	D :	John	Rud	olph-						Report To: John Rudolph											
Project Name: Fire Effects Study - Dry Weather		Company: WSP USA Co										Com	Company: WSP USA										
Project# 5025220004.05 Please in	clude This	Address: 9177 Sky Park Court									Email: john.rudolph@wsp.com												
PO# C015102726; GL Code 573000, Org 5025) in to on	invoice	San Diego, CA 92123								(electronic copies only)													
Sampler's Name: John Rudolph		Lab Use						Ī															
QC Level: TAT:			F	reser	vative	es																	
Sample Data				Mat	trix		,								Anai	lyses							
Date Collected 405BH2B 405T 1717 214 224 6/29/2023 SMC00464 6/29/2023	Time Collected #Containers 1270 12 0870 12	Soil/Sediment	Seawater	x x Freshwater	Algae	Filter	Benthic Macroinverts	x Hardness	SST X	x x	x x Total Metals	x x Dissolved Metals	x x Nutrients	x x PAHs	x x Chlorophyll-a								
								-	-			\vdash		\vdash			-	_	-				
																<u> </u>							
Samplers Signature	Date 6/25/23 Time 1606	Lab No	o.:	Fo	or Lai	b Use									С	omm	ents						
	Date 1506	Does CC	C mate						\neg														
		Broken			_					PL	EASE	SEE	ATTA	4CHE	ED LI	ST F	OR D	ETA	ILED	ANAI	LYTE	LIST	r
Received By:	Date 13 Time (o. Oko	Received COC sea	u witnin al intact	:Yor(N Times	Jor N																	
Relinquished By:	Date Time	Any other	er proble ms, Am	ems: Y ec cont	or N acted:	Y or N																	
Received By (LAB):	Date Time	Date contacted:																					

Upper Los Angeles River Watershed Management Area Fire Effects Study Work Plan/Quality Assurance Project Plan – FINAL November 2022

12.2 Water Quality Samples

Water quality samples will be labeled with the project name, sample ID number, site location, date and time collected, analyses to be performed, and sample preservatives (if any). Samples will then be stored and transported on wet ice (6 degrees Celsius [°C]) to the proper analytical laboratory within the appropriate time frame so analyses can be initiated the within specified holding times (Table 12-2).

Table 12-2.
Sample Handling and Holding Times

Analyte	Amount Required	Recommended Preservation		
Water Field Parame	eters		Container	
рН	In Field	NA	NA	NA
Temperature				
Specific Conductivity	In Field	NA	NA	NA
Dissolved Oxygen	In Field	NA	NA	NA
Turbidity	In Field	NA	NA	NA
Water Conventiona	al Parameters			
→ Hardness	100 mL	6 months	Poly	Cool to ≤ 6°C
- TDS	500 mL	7 days	Poly	Cool to ≤ 6°C
∠ TSS	500 mL	7 days	Glass, Poly	Cool to ≤ 6°C
Water Metal Param	eters¹			
Aluminum (Dissolved)	250 mL	180 days	250-mL Poly	HNO₃, Lab filtered
⊶Aluminum (Total)	250 mL	180 days	250-mL Poly	HNO ₃
Cadmium (Dissolved)	250 mL	180 days	250-mL Poly	HNO₃, Lab filtered
_Cadmium (Total)	250 mL	180 days	250-mL Poly	HNO₃
Copper — (Dissolved)	250 mL	180 days	250-mL Poly	HNO₃, Lab filtered
←Copper (Total)	250 mL	180 days	250-mL Poly	HNO₃
Iron (Dissolved)	250 mL	180 days	250-mL Poly	HNO₃, Lab filtered
- Iron (Total)	250 mL	180 days	250-mL Poly	HNO₃
∠Lead (Dissolved)	250 mL	180 days	250-mL Poly	HNO₃, Lab filtered
Lead (Total)	250 mL	180 days	250-mL Poly	HNO₃
Manganese (Dissolved)	250 mL	180 days	250-mL Poly	HNO ₃ , Lab filtered
→Manganese (Total)	250 mL	180 days	250-mL Poly	HNO₃
Nickel (Dissolved)	250 mL	180 days	250-mL Poly	HNO₃, Lab filtered
Nickel (Total)	250 mL	180 days	250-mL Poly	HNO₃

Upper Los Angeles River Watershed Management Area Fire Effects Study Work Plan/Quality Assurance Project Plan – FINAL November 2022

Table 12-2.
Water Sample Handling and Holding Times (continued)

Analyte	Amount Required	Holding Time	Recommended Container	Recommended Preservation
Selenium (Dissolved)	250 mL	180 days	250-mL Poly	HNO ₃ , Lab filtered
Selenium (Total)	250 mL	180 days	250-mL Poly	HNO₃
Zinc (Dissolved)	250 mL	180 days	250-mL Poly	HNO₃, Lab filtered
Zinc (Total)	250 mL	180 days	250-mL Poly	HNO₃
Water Nutrient Par	rameters			
, Ammonia	250 mL	48 hours; 28 days if acidified	250-mL Poly	Cool to ≤ 6°C; samples may be preserved with 2 mL of H ₂ SO ₄ per L
Nitrate	250 mL	2 days	250-mL Poly	Cool to ≤ 6°C
✓ Nitrite	250 mL	2 days	250-mL Poly	Cool to ≤ 6°C
TKN	250 mL	7 days; 28 days if acidified	250-mL Poly	Cool to ≤ 6°C; H₂SO₄ to pH < 2
Total Nitrogen (Calculation)	NA	NA	NA	NA
Dissolved Phosphorus	250 mL	28 days	250-mL Poly	Filter within 15 minutes of collection; Cool to ≤ 6°C; H ₂ SO ₄ to pH < 2
_Total Phosphorus	250 mL	28 days	250-mL Poly	Cool to ≤ 6°C; H₂SO₄ to pH < 2
Water Biologic Par	rameters			
_Chlorophyll-a	1,000 mL	2 days	1-liter Amber	Cool to ≤ 6°C
Water PAHs				
Total PAHs	1,000 mL	7 days extraction/ 40 days analysis	500-mL Amber Glass	Cool to ≤ 6°C

[°]C = degree(s) Celsius; HNO₃₌ nitric acid; H₂SO₄₌ sulfuric acid; mL = milliliter(s); NA = not applicable; P = plastic; PAH = polycyclic aromatic hydrocarbon; TDS = total dissolved solids; TKN = total Kjeldahl nitrogen; TSS = total suspended solids

1. Metals samples will be acidified by the laboratory.

Sample Receipt Checklist

	Weck WKO:	3F29116		Date/	Time Received:	06/29/23 @ 16:06
٧	VKO Logged by:	Lester Abad	-		# of Samples:	
Samp	les Checked by:	Lester Abad			Delivered by:	Client
	Task	The same of the same of the same of the same of	Yes	No	N/A	Comments
	COC present at r	eceipt?				осинисть
	COC properly co	.*			<u> </u>	
ပ္	COC matches sar			$\overline{\Box}$	-	
200					_	
					. -	
	Project Manager	notified about COC discrepancy?				
	· ·				_	
	Sample Tempera		12.1°	0	·	
_	Samples received		\boxtimes		_	
ţį	Ice Type (Blue/W	· · · · · · · · · · · · · · · · · · ·	WET			
Ĩ,	All samples intac		\boxtimes		<u></u>	
Į.	Samples in prope		\boxtimes			
آ	Sufficient sample	e volume?	\boxtimes		_	
eip	Samples intact?		\boxtimes		-	
Receipt Information	Received within	holding time?			_	· · · · · · · · · · · · · · · · · · ·
_					· · · <u> </u>	
	Project Manager	notified about receipt info?				
	Sample labels ch	ecked for correct preservation?	\boxtimes			
'n		(No) none, If Yes (see comment)			\boxtimes	□<6mm/Pea Size?
atic	524.2, 524.3, 624 	1.1, 8260, 1666 P/T, LUFT	_		· · · · · · · · · · · · · · · · · · ·	Commy rea Size:
ij					_	
/er	pH verified upon		(73)	_		pH paper Lot#
, uc	525.2<2, 6710B<	4 pres tests <2; 522<4; TOC <2; 508.1,				
atic	323.2 \2, 07100	2, 000.3 3-9				
reservation Verification?	Free Chlorine Te	sted <0.1 (Organics Analyses)	\boxtimes			Cl Took Shaira Ladd
res	Tree emotine re-	oted 10.1 (Organies Analyses)		ш	<u>-</u>	Cl Test Strip Lot#
Sample P	O&G pH <2 verif	led?		П		pH paper Lot#
ldu	The second second			7		pH Reading:
Sar	pH adjusted for (O&G	70			Acid Lot#
		470 per 1				Amt added:
	Project Manager	notified about sample preservation?	· 🗆		<u></u>	Aint auueu.
		4 · · · · · · · · · · · · · · · · · · ·		_	<u> </u>	
PM Coi	mments					
001						
·	· · · · · · · · · · · · · · · · · · ·					
		list Completed by:				
Signat	ure: Lester Abai	<i>t</i>			Date:	06/29/23

Innovative Solutions for Nature

PROJECT SAMPLE LIST

WSP USA PHYSIS Project ID: 2307002-002

Fire Effects Study - Dry Weather Project # 5025220004.05 GL Code 573000 O Total Samples: 2

PHYSIS ID	Sample ID	Description	Date	Time	Matrix	Sample Type
108045	405BH2A		6/29/2023	12:30	Biologic	Not Specified
108046	SMC00464		6/29/2023	8:50	Biologic	Not Specified

1151)																C	Con	trol	Nun	nbei	·:		
						Cł	naii	n o	f C	Cus	tod	y				D	ate: 6	/29/23				Page	: 1 of 1
Project Manager: John Rud	dolph		phone: 858-	243-8158	Bill To: John Rudolph								Report	To: 、	John R	udolp	h						
Project Name: Fire Effects					Comp	any:	WSP	USA	,				_	Compa		NSP U							
Project# 5025220004.05	P	lease in	lude 1	this into	Address: 9177 Sky Park Court									Email:	john.r	udolph	@wsp	.com					
FOR COAST 100; GL Code	573000, Org 5025	lease in	roice		San Diego, CA 92123							(electronic copies only)											
Sampler's Name: John Ru	ıdolph				Lab Use						TI							T					
QC Level:		TAT:				F	reser	vative	s														
Sample Data							Mat	trix								A	nalys	es					
Sample Station ID 405BH2B 405 SMC00464	Client ID	Date Collected 6/29/2023 6/29/2023	Time Collected 1210	# Containers 2 2	Soil/Sediment	Seawater	Freshwater	Algae	x x Filter	Benthic Macroinverts	× × Chlorophyll-a	x x Ash-free Dry Mass											
Received By: Date 6/29/23 Time 1500 Received By: Date 6/29/23 Time 1606 Received By: Date 7/6/23 Time 1606						For Lab Use Lab No.: Does COC match samples: Y or N Broken container: Y or N Received within holding time: Y or N								Submitted on 47mm glass-fiber filters									
Relinquished By:	- 1-		Date	Time	COC seal intact: Y or N Any other problems: Y or N If problems, Amec contacted: Y or N												_						
Received By (LAB): Date Time					Date contacted:// Temperature (°C):																		

Sa

Sample Receipt Summary	Project Name:	Fire Effects Study - Dry Weather Project # 5025220004.05 GL Code 573000 Org 5025
_	COC Page Number:	_
1. Initials Received By:	Bottle Label Color:	NA
Initials Received By: Data Passived:		
2. Date Received: 7/7/23 3. Time Received: 925		
4. Client Name: WS	D	
5. Courier Information: (Please circle)	<u> </u>	
• Client • UPS	Area Fa	st • DRS
• FedEx • GSO/GLS	Ontrac	
PHYSIS Driver:	Ontiac	• PAMS
i. Start Time:		iii. Total Mileage:
ii. End Time:		iv. Number of Pickups:
6. Container Information: (Please put the # of co	_	
• Cooler • Styrofoam Cooler		
Carboy(s) Carboy Trash Can(
7. What type of ice was used: (Please circle any the Wet Ice 8. Randomly Selected Samples Temperature (°C)	Dry Ice •	Water • None I/R Thermometer #
Inspection Info		
1. Initials Inspected By: R6 H		
Sample Integrity Upon Receipt:		
 COC(s) included and completely filled out All sample containers arrived intact 		
All samples listed on COC(s) are present		
4. Information on containers consistent with info		
5. Correct containers and volume for all analyses		
6. All samples received within method holding ti	me	📵 / No
7. Correct preservation used for all analyses indi	cated	Yes / No
8. Name of sampler included on COC(s)		(fes) / No
	Notes:	
See temp. Composite volume & A		
Composite volume & A	rea indo	missing.

Project Iteration ID: 2307002-002

WSP USA

Client Name:

115[]																	Con	rol I	Num	ber			
						Cł	naii	n c	of C	us	tod	ly					Date: 6	29/23				Page	: 1 of 1
Project Manager: John Rudolp			phone: 858		Bill To):	John	Rudo	olph					Rep	ort To:	John	Rudolpl	1					
Project Name: Fire Effects Stu	dy - Dry Weather			12-1	Company: WSP USA									Con	npany:	WSP	USA						
Project# 5025220004.05	7	lease inc	ine ?	ואון ואוט	Address: 9177 Sky Park Court									Email: john.rudolph@wsp.com									
; GL Code 573	3000, Org 5025	on in	Poice	निर्धि रेगी	San Diego, CA 92123							(electronic copies only)											
Sampler's Name: John Rudol	ph						Lab	Use															
QC Level:		TAT:				F	reser	vative	s														
Sample Data							Mat	trix									Analyse	s					
Sample Station ID 405B+128-405 81 SMC00464	Client ID	Date Collected 6/29/2023 6/29/2023	Time Collected	# Containers 2 2	Soil/Sediment	Seawater	Freshwater	Algae	x x Filter	Benthic Macrol nverts	x x Chlorophyll-a	x x Ash-free Dry Mass											
Samplers Signature	1-1111		Date 6/29/53	Time ,			F	or La	b Use							-	Con	ments					
Pulling label B. (1)	5/1/4			1500	Lab N								Subm	itted o	n 47mı	n gla	ss-fibe	r filter:					
Received By:	Mr. 1	lick Jumb		Time 1606		contair	ch samp ner: Y d n holdin	or N							fille	- Vo	olume	Alga Vol	ae Con	np	Area Sam	n pled	
117/101				COC se							s	MC004	64	22	mL	•	: 260 г	пL		138.6			
Relinquished By:	elinquished By: Date Time			Time	Any oth								105BH2		32								
Received By (LAB):			Date	Time	Date contacted:// Temperature (°C):)U3B f12	A	<i>-</i>			245 1	IIIL		138.6				

Sa

Sample Receipt Summary	Project Name:	Fire Effects Study - Dry Weather Project # 5025220004.05 GL Code 573000 Org 5025
_	COC Page Number:	_
1. Initials Received By:	Bottle Label Color:	NA
Initials Received By: Data Passived:		
2. Date Received: 7/7/23 3. Time Received: 925		
4. Client Name: WS	D	
5. Courier Information: (Please circle)	<u> </u>	
• Client • UPS	Area Fa	st • DRS
• FedEx • GSO/GLS	Ontrac	
PHYSIS Driver:	Ontiac	• PAMS
i. Start Time:		iii. Total Mileage:
ii. End Time:		iv. Number of Pickups:
6. Container Information: (Please put the # of co	_	
• Cooler • Styrofoam Cooler		
Carboy(s) Carboy Trash Can(
7. What type of ice was used: (Please circle any the Wet Ice 8. Randomly Selected Samples Temperature (°C)	Dry Ice •	Water • None I/R Thermometer #
Inspection Info		
1. Initials Inspected By: R6 H		
Sample Integrity Upon Receipt:		
 COC(s) included and completely filled out All sample containers arrived intact 		
All samples listed on COC(s) are present		
4. Information on containers consistent with info		
5. Correct containers and volume for all analyses		
6. All samples received within method holding ti	me	📵 / No
7. Correct preservation used for all analyses indi	cated	Yes / No
8. Name of sampler included on COC(s)		(fes) / No
	Notes:	
See temp. Composite volume & A		
Composite volume & A	rea indo	missing.

Project Iteration ID: 2307002-002

WSP USA

Client Name:

Rich Hanken

From: Jernack, Nicholas <nicholas.jernack@wsp.com> on behalf of Jernack, Nicholas

Sent: Monday, July 24, 2023 1:17 PM

To: Rich Hanken

Cc: Misty Mercier; Rudolph, John

Subject: Fire Effects Study - Dry Weather 2307002-002 COC & SRS

WSP Fire Effects Study - Dry Weather Project # 5025220004.05 GL Code 573000 Org # **Attachments:**

5025 2307002-002 COC SRS (002).pdf

Hi Rich,

Ive attached the information for the two missing samples below and in the amended COC attached above.

For SMC00464:

Composition Volume: 260 mL

Area Sampled: 138.6 Filtered Volume: 25mL

For 405BH2A:

Composition Volume: 245 mL

Area Sampled: 138.6 Filtered Volume: 25mL

Please let me know if you need any additional information

Nicholas Jernack

Associate Consultant, Biologist

M: (732) 966-5162

nicholas.jernack@wsp.com

WSP Global Inc. 9177 Sky Park Court, San Diego, CA 92123 USA

wsp.com

A Please consider the environment before printing this email.

NOTICE: This communication and any attachments ("this message") may contain information which is privileged, confidential, proprietary or otherwise subject to restricted disclosure under applicable law. This message is for the sole use of the intended recipient(s). Any unauthorized use, disclosure, viewing, copying, alteration, dissemination or distribution of, or reliance on, this message is strictly prohibited. If you have received this message in error, or you are not an authorized or intended recipient, please notify the sender immediately by replying to this message, delete this message and all copies from your e-mail system and destroy any printed copies.

Upper Los Angeles River Watershed Management Area Fire Effects Study Interim Report December 2023

Appendix B. Data Quality Assurance/Quality Control

Data Quality Assurance/Quality Control

Data quality objectives (DQOs) are quantitative and qualitative statements that specify the tolerable levels of potential errors in the data and ensure that the data generated meet the standards for published data in the peer-reviewed literature. DQOs specify the quantity and quality required to support the Study objectives. DQOs are derived from the quality assurance (QA) process that (1) clarify the Study technical and quality objectives, (2) define the appropriate type of data, and (3) specify the tolerable levels of potential decision errors used to establish the quality and quantity of data needed to support decisions.

Table B-1 and Table B-2 specify the DQOs for specific field and laboratory measurements for the Study.

These analytes and indicators were chosen because of their relevance to post-fire water quality and their inclusion in the Los Angeles River Metals and Nutrient TMDLs. The analytes include common priority pollutants in post-fire runoff and those listed for the downstream waterbodies on the Clean Water Act Section 303(d) list of water quality impaired segments.

Table B-1. Data Quality Objectives for Field Measurements

Group	Parameter	Accuracy	Precision	Completeness	
Field Testing	рН	+0.2 unit	No SWAMP requirement; will use ±0.1 unit	90%	
	Specific Conductance	+ 0.5% of reading + 0.001 mS/cm	0.001 to 0.1 mS/cm (range- dependent)	90%	
	DO	<u>+</u> 0.2	0.01 mg/L	90%	
	Temperature	<u>+</u> 0.5 °C	0.1 °C	90%	
	Turbidity	10%	0.1 NTU	90%	

°C = degree(s) Celsius; DO = dissolved oxygen; mg/L = milligram(s) per liter; mS/cm = milliSiemen(s) per centimeter; NTU = nephelometric turbidity unit(s); SWAMP = Surface Water Ambient Monitoring Program

Precision describes how well-repeated measurements agree. The evaluation of precision described here relates to repeated measurements/samples collected in the field (field duplicates), repeated measurements on the same sample in the laboratory (laboratory duplicates [LDs]), and repeated measurements on matrix spikes (MSs) and laboratory control samples (LCSs). Relative percent differences (RPDs) were calculated to determine the precision between duplicate samples, as follows:

$$RPD = \frac{abs[x_1 - x_2]}{0.5 * (x_1 + x_2)}$$

Accuracy is defined as the difference between the measured value of an indicator and its true or expected value, which is an estimate of systematic error or net bias. It describes how close the measurement is to its true value. The accuracy of chemical measurements applies to blank spikes

(BSs), LCSs, and MSs and is quantified as percent recovery. The laboratories will use performance-based instrument calibration and tuning to compare statistically derived limits for the instrumentation and methods with programmatic target recovery limits.

Table B-2. Data Quality Objectives for Laboratory Measurements

Group	Parameter			Completeness
	Hardness	85% to 115% recovery	RPD < 30% (not applicable if native concentration of either sample is less than the reporting limit)	90%
	Total Organic Carbon	85% to 115% recovery	RPD < 20% (not applicable if native concentration of either sample is less than the reporting limit)	90%
	Dissolved Organic Carbon	90% to 110% recovery	RPD < 20% (not applicable if native concentration of either sample is less than the reporting limit)	90%
	Total Suspended Solids	Not applicable for solids in water	RPD < 25% (not applicable if native concentration of either sample is less than the reporting limit)	90%
Laboratory Analyses – Water	Total Dissolved Solids	Not applicable for solids in water	RPD < 25% (not applicable if native concentration of either sample is less than the reporting limit)	90%
	Total and Dissolved Metals	75% to 125% recovery	RPD < 25% (not applicable if native concentration of either sample is less than the reporting limit)	90%
	Nutrients	80% to 120% recovery	RPD < 25% (not applicable if native concentration of either sample is less than the reporting limit)	90%
	Chlorophyll-a	No SWAMP requirement – suggest ±30% of SRM	No SWAMP requirement – suggest duplicate ± 25% Relative Percent Different (RPD)	90%
	РАН	50% to 150% recovery	RPD < 25% (not applicable if native concentration of either sample is less than the reporting limit)	90%

PAH = polycyclic aromatic hydrocarbon; RPD = relative percent difference; SRM = standard reference material; SWAMP = Surface Water Ambient Monitoring Program

Dry Weather Water Quality Assurance/Quality Control Summary

Table B-3 summarizes the QA/quality control (QC) review for the Study's dry weather results. In particular:

- 18 percent of the field duplicate results exceeded the target RPD of 25 percent. Because microbiological constituents have an exponential growth curve, their results are logtransformed prior to calculating the RPD value.
- 3 percent of the field blank results were detected above the reporting limit (RL).
- 17 percent of field sample results were qualified with a J flag, indicating an estimated concentration between the method detection limit (MDL) and RL.
- 2 percent of the method blank sample results were detected and reported above the RL.
- 0 percent of the laboratory duplicates (excluding matrix spike duplicates and lab control spike duplicates) had an RPD that exceeded SWAMP RPD DQOs.
- 2 percent of the matrix spike duplicates (MSDs) and laboratory control sample duplicates (LCSDs) had an RPD that exceeded SWAMP RPD DQOs.
- 0 percent of the MS, MSs, and LCS results had a percent recovery that exceeded SWAMP percent recovery DQOs.

Table B-3. Dry Weather Quality Assurance/Quality Control Summary

QA/QC Summary	Field Data Exceedances of DQOs		Analytical Data	Laboratory QA Data Exceedances of DQOs			
	Field Duplicate RPD ¹	Field Blank Detections >RL	Estimations (J Flags)	Method Blank Detection >RL	LD RPD	MSD, LCSD RPD	MS, MSD, LCS % Recovery
Total QA/QC Issues	11	2	66	2	0	7	0
Total Number of Results	62	67	387	126	13	431	166
Percentage of Data with QA/QC Issues	18%	3%	17%	2%	0%	2%	0%

^{1.} DQO for field duplicates is RPD = 0-25.

DQO = data quality objective; LCS = laboratory control sample; LCSD = laboratory control sample duplicate; LD = laboratory duplicate; MS = matrix spike; MSD = matrix spike duplicate; QA = quality assurance; QC = quality control; RL = reporting limit; RPD = relative percent difference

Dry Weather Laboratory Analysis Holding Times

A total of 99 percent of dry weather samples collected were analyzed within their holding times. Chlorophyll-a analysis from the June 27, 2023, dry weather event was performed outside of the holding time because of improper handling by the subcontracted laboratory. The primary laboratory filtered and froze samples to extend the holding time to 28 days. However, the subcontracted laboratory did not conduct the analysis. Applicable analytical holding times per

method and corrective actions have been discussed with the laboratories to ensure that these holding time exceedances are prevented in future monitoring. Furthermore, the primary laboratory is also seeking alternative laboratories to support sample analyses and avoid mishandling of samples.

Weather Water Quality Assurance/Quality Control Summary

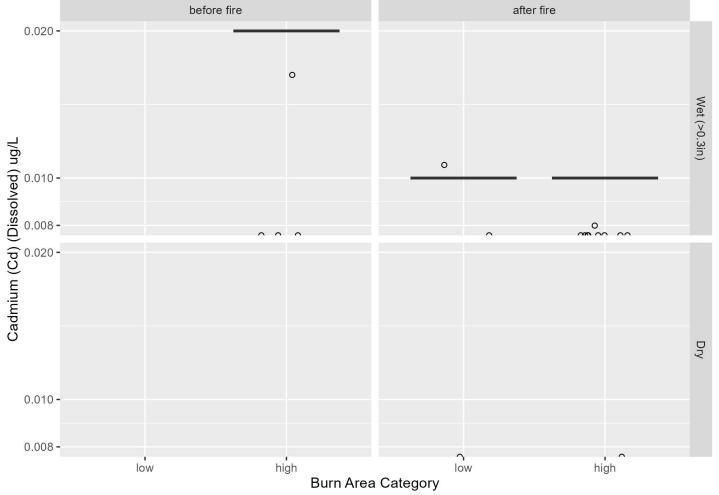
Table B-4 summarizes the QA/QC review for the Study's wet weather results. In particular:

- 0 percent of the field duplicate results exceeded the target RPD of 25 percent. Because microbiological constituents have an exponential growth curve, their results are logtransformed prior to calculating the RPD value.
- 0 percent of the field blank results were detected above the RL.
- 15 percent of field sample results were qualified with a J flag, indicating an estimated concentration between the MDL and RL.
- 2 percent of the method blank sample results were detected and reported above the RL.
- 0 percent of the laboratory duplicates (excluding MSDs and LCSDs) had an RPD that exceeded SWAMP RPD DQOs.
- 3 percent of the MSDs and LCSDs had an RPD that exceeded SWAMP RPD DQOs.
- 0.4 percent of the MS, MSDs, and LCS results had a percent recovery that exceeded SWAMP percent recovery DQOs.

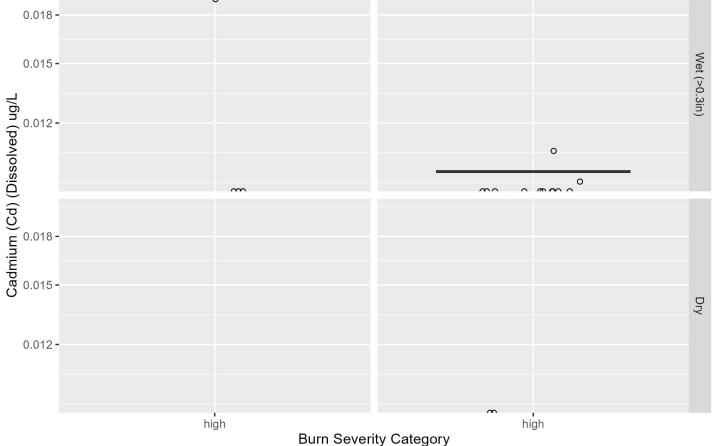
Table B-4. Wet Weather Quality Assurance/Quality Control Summary

QA/QC Summary	Field Data Exceedances of DQOs		Analytical Data	Laboratory QA Data Exceedances of DQOs			
	Field Duplicate RPD ¹	Field Blank Detections >RL	Estimations (J Flags)	Method Blank Detection >RL	LD RPD	MSD, LCSD RPD	MS, MSD, LCS % Recovery
Total QA/QC Issues	0	0	88	4	0	21	1
Total Number of Results	10	5	576	190	15	611	230
Percentage of Data with QA/QC Issues	0%	0%	15%	2%	0%	3%	0.4%

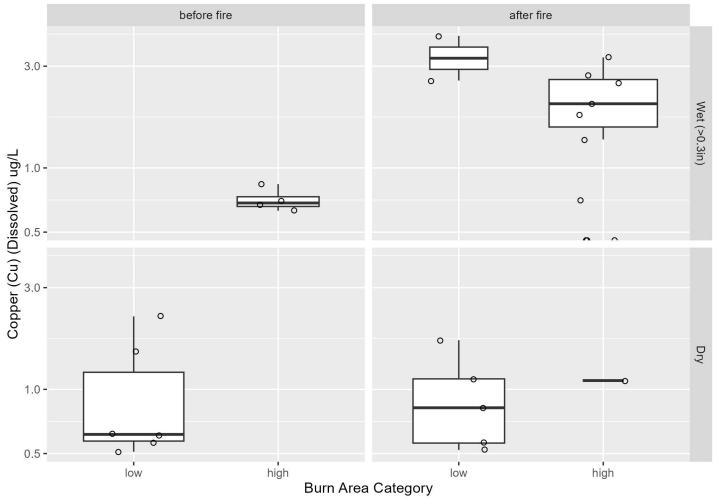
^{1.} DQO for field duplicates is RPD = 0-25.

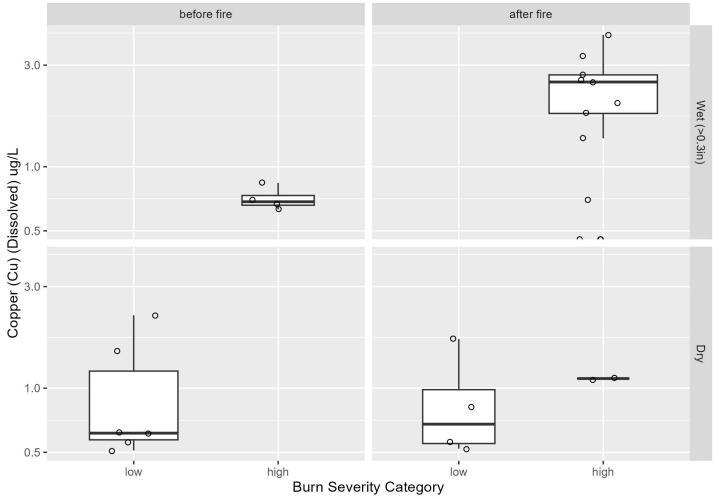

DQO = data quality objective; LCS = laboratory control sample; LCSD = laboratory control sample duplicate; LD = laboratory duplicate; MS = matrix spike; MSD = matrix spike duplicate; QA = quality assurance; QC = quality control; RL = reporting limit; RPD = relative percent difference.

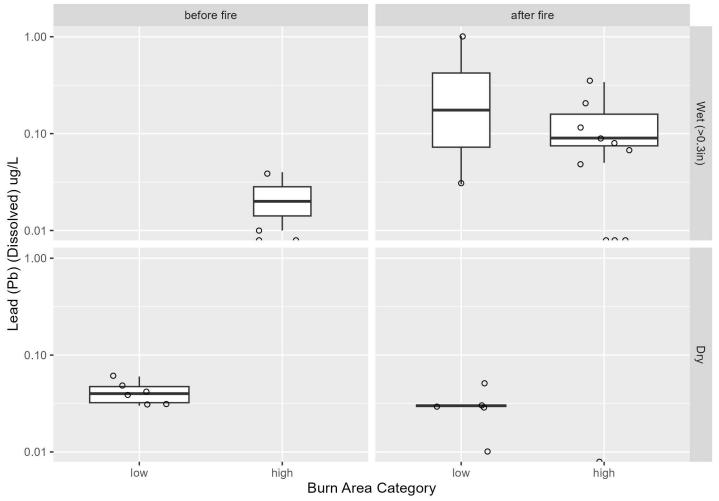
Upper Los Angeles River Watershed Management Area Fire Effects Study Interim Report December 2023

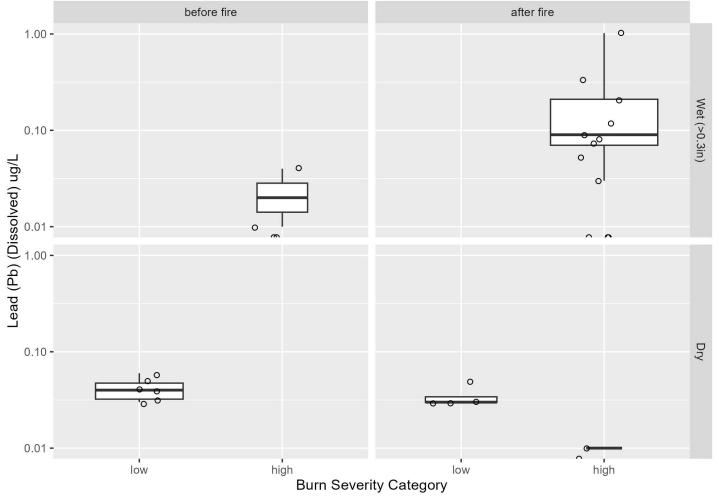

Wet Weather Laboratory Analysis Holding Times

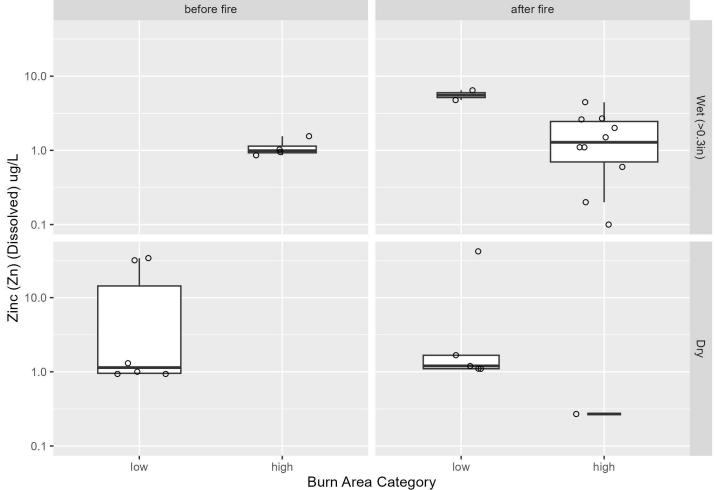
A total of 98 percent of wet weather samples met analytical holding times. Holding times were exceeded for the nitrate, nitrite, and nitrate + nitrite samples collected during the March 11, 2023, wet weather event. Applicable analytical holding times per method and corrective actions have been discussed with the laboratories to ensure that these holding time exceedances are prevented in future monitoring. Furthermore, the primary laboratory is also seeking alternative laboratories to support sample analyses and avoid mishandling of samples.

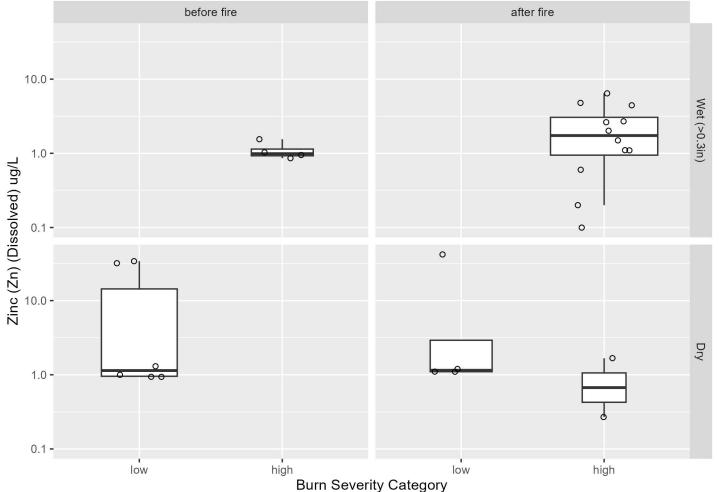

Burn Area vs. Dissolved Cadmium (Cd)


Burn Severity vs. Dissolved Cadmium (Cd) before fire after fire 0 0


Burn Area vs. Dissolved Copper (Cu)

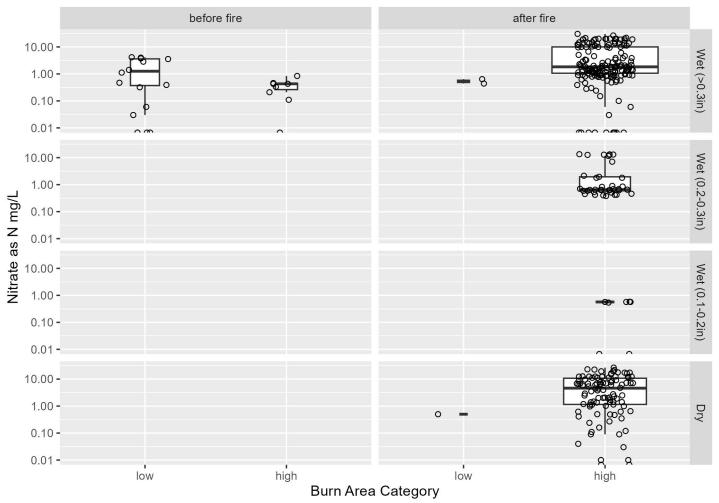

Burn Severity vs. Dissolved Copper (Cu)


Burn Area vs. Dissolved Lead (Pb)

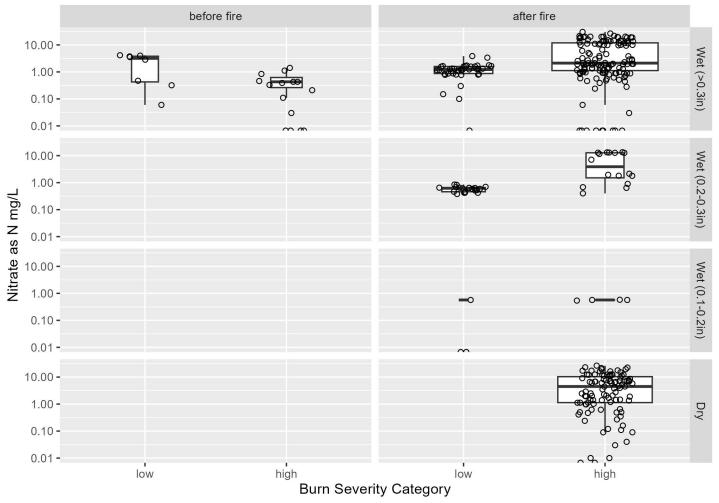

Burn Severity vs. Dissolved Lead (Pb)

Burn Area vs. Dissolved Zinc (Zn)

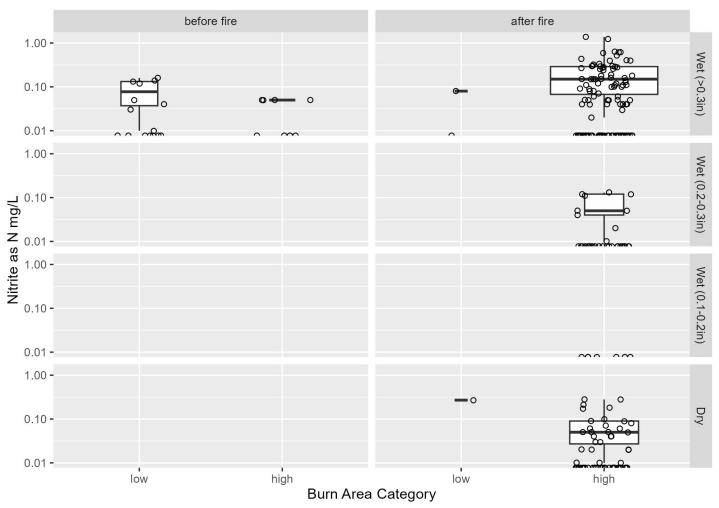
Burn Severity vs. Dissolved Zinc (Zn)

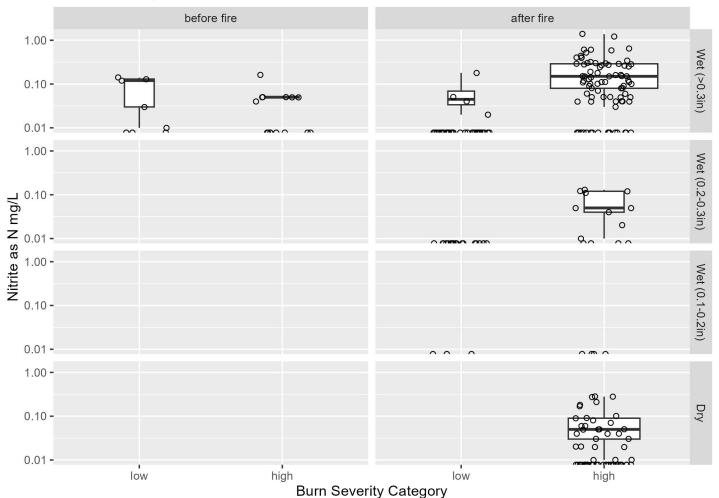


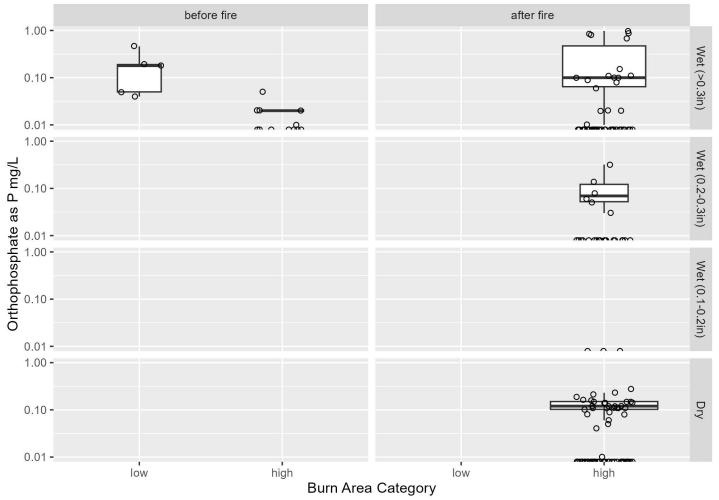
Burn Area vs. Nitrate + Nitrite as N after fire 5 -Wet (>0.3in) 3 -Nitrate + Nitrite as N mg/L 0 3 -Dry low high

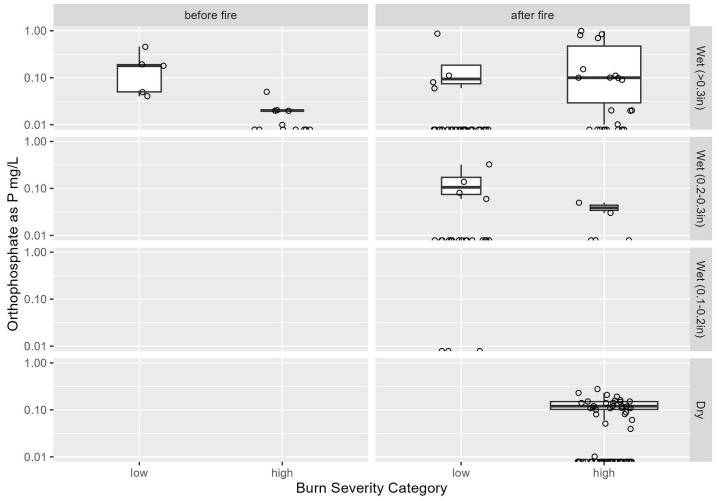

Burn Area Category

Burn Severity vs. Nitrate + Nitrite as N after fire 5 -Wet (>0.3in) 3 -Nitrate + Nitrite as N mg/L 0 3 high **Burn Severity Category**


Burn Area vs. Nitrate as N


Burn Severity vs. Nitrate as N


Burn Area vs. Nitrite as N


Burn Severity vs. Nitrite as N

Burn Area vs. Orthophosphate as P

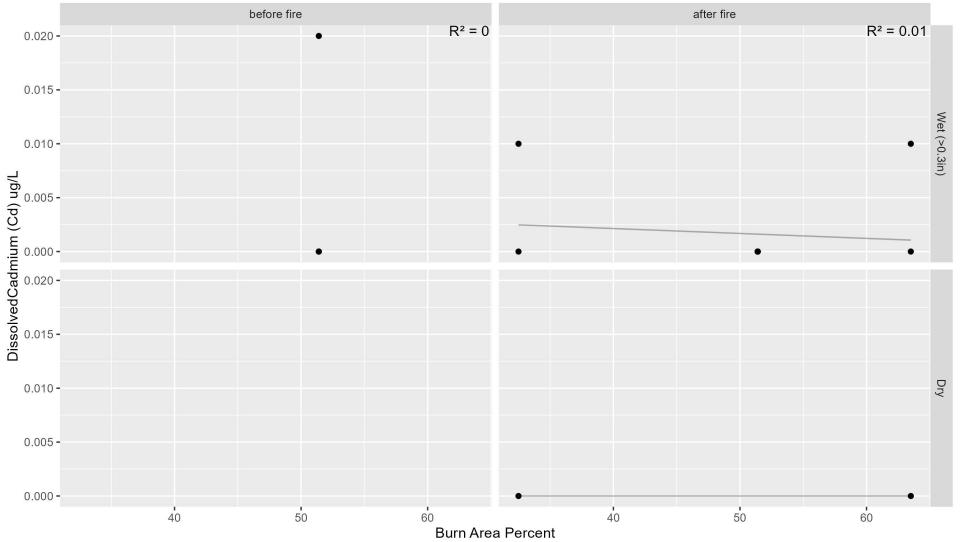
Burn Severity vs. Orthophosphate as P

Burn Area vs. Particulate Cadmium (Cd) before fire after fire 0 0 1.0 -Cadmium (Cd) (Particulate) ug/L 0 0 Wet (>0.3in) 0 high high **Burn Area Category**

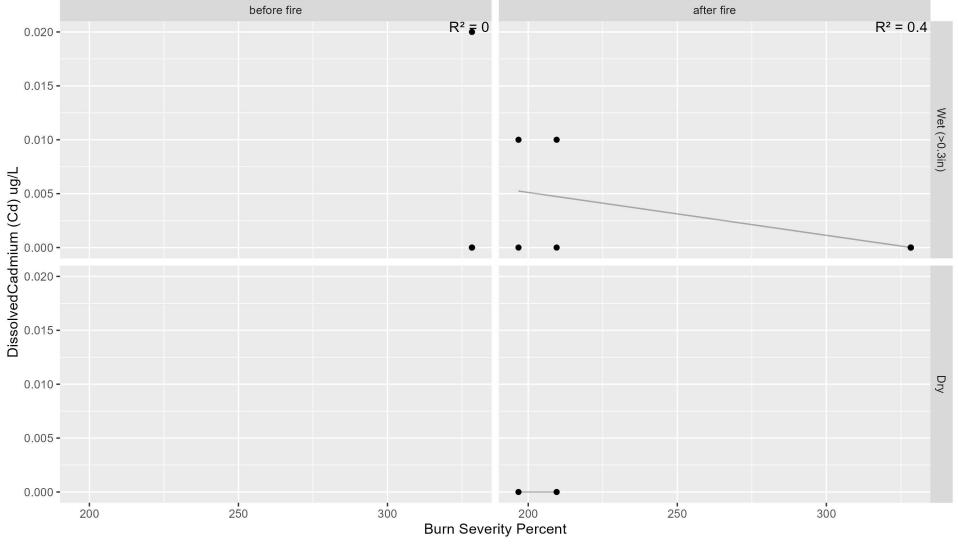
Burn Severity vs. Particulate Cadmium (Cd) before fire after fire 0 1.0 -Cadmium (Cd) (Particulate) ug/L 0 Wet (>0.3in) high high **Burn Severity Category**

Burn Area vs. Particulate Copper (Cu) before fire after fire 0 100 -0 Copper (Cu) (Particulate) ug/L 0 10 -Wet (>0.3in) 0 0 0 0 0 high high **Burn Area Category**

Burn Severity vs. Particulate Copper (Cu) before fire after fire 0 100 -0 Copper (Cu) (Particulate) ug/L 0 10 -Wet (>0.3in) 0 0 0 0 0 high high **Burn Severity Category**


Burn Area vs. Particulate Lead (Pb) before fire after fire 100.0 -0 0 0 0 Lead (Pb) (Particulate) ug/L 10.0 -0 Wet (>0.3in) 0 0 1.0 -0 0 0 0.1 -0 high high **Burn Area Category**

Burn Severity vs. Particulate Lead (Pb) before fire after fire 100.0 -0 0 0 0 Lead (Pb) (Particulate) ug/L 10.0 -0 Wet (>0.3in) 0 0 1.0 -0 0 0 0.1 -0 high high **Burn Severity Category**


Burn Area vs. Particulate Zinc (Zn) before fire after fire 0 0 100 -0 0 Zinc (Zn) (Particulate) ug/L 0 Wet (>0.3in) 0 10 -0 0 0 0 0 high high **Burn Area Category**

Burn Severity vs. Particulate Zinc (Zn) before fire after fire 0 100 -0 Zinc (Zn) (Particulate) ug/L 0 Wet (>0.3in) 0 10 -0 0 0 0 0 1 -0 high high **Burn Severity Category**

Burn Area vs. Dissolved Cadmium (Cd)

Burn Severity vs. Dissolved Cadmium (Cd)

Burn Area vs. Dissolved Copper (Cu) before fire after fire $R^2 = 0.21$ $R^2 = 0$ 4 -3 -Wet (>0.3in) 2 -DissolvedCopper (Cu) ug/L $R^2 = 0.47$ $R^2 = 0.23$ 0 -20 20 60 40 Burn Area Percent

Burn Severity vs. Dissolved Copper (Cu) before fire after fire $R^2 = 0$ $R^2 = 0.13$ 4 -3 -Wet (>0.3in) 2 -DissolvedCopper (Cu) ug/L $R^2 = 0.47$ $R^2 = 0$ 0 -

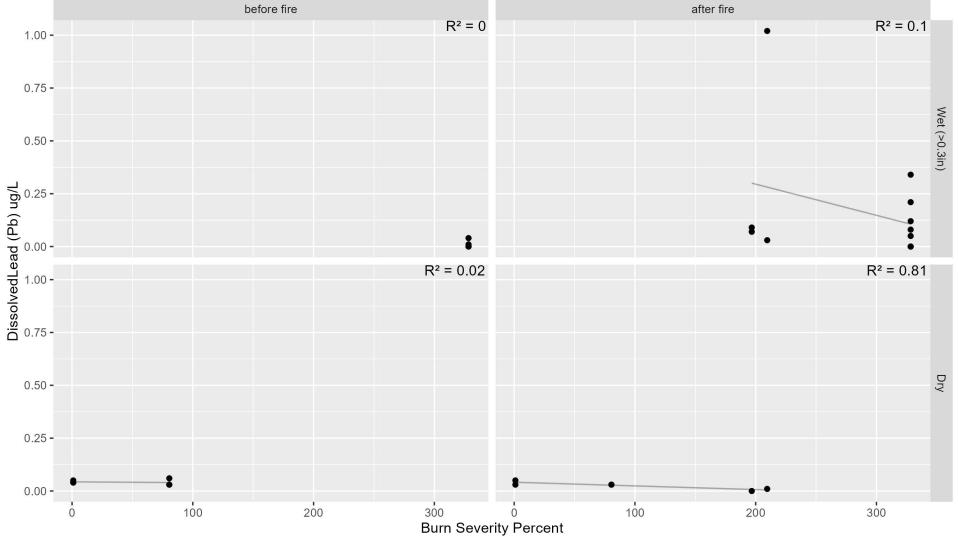
Burn Severity Percent

100

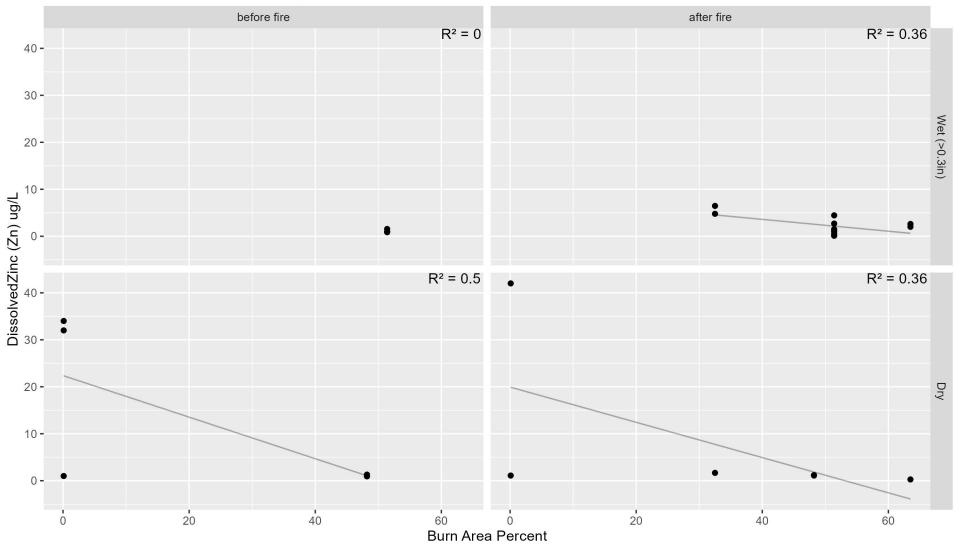
300

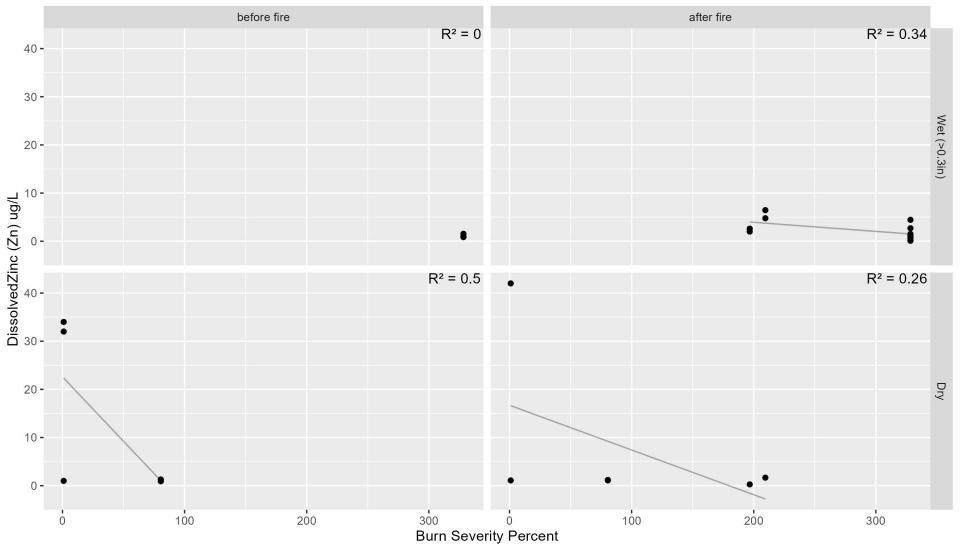
300

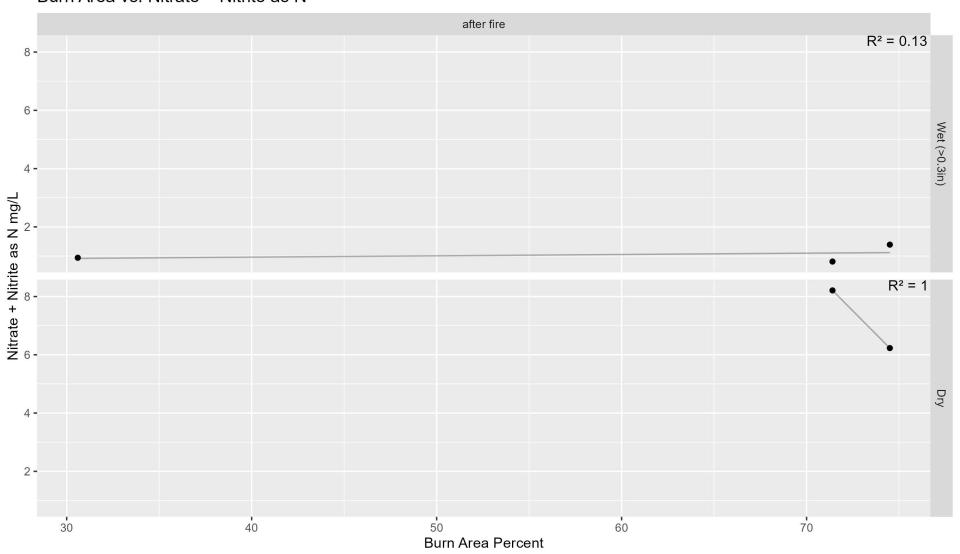
200

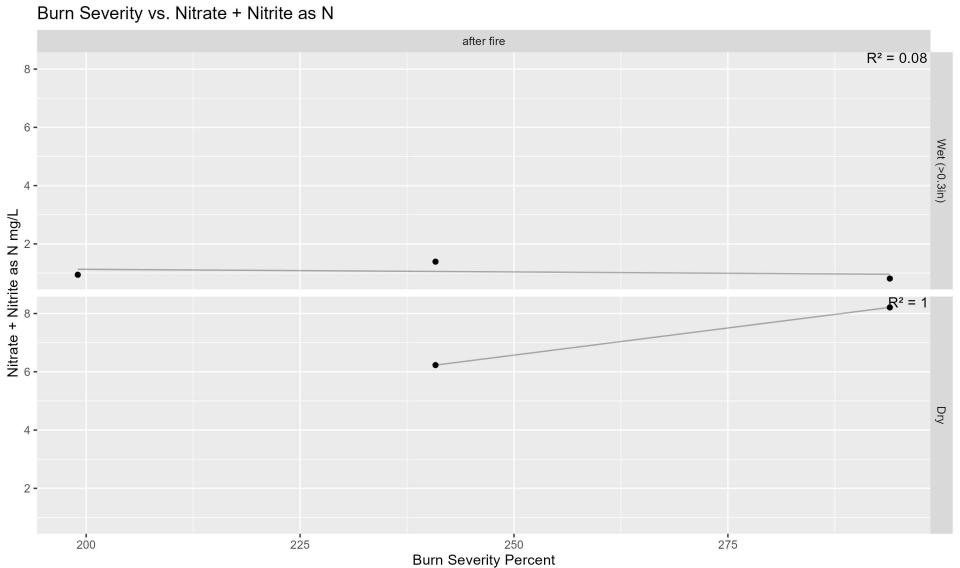

200

100

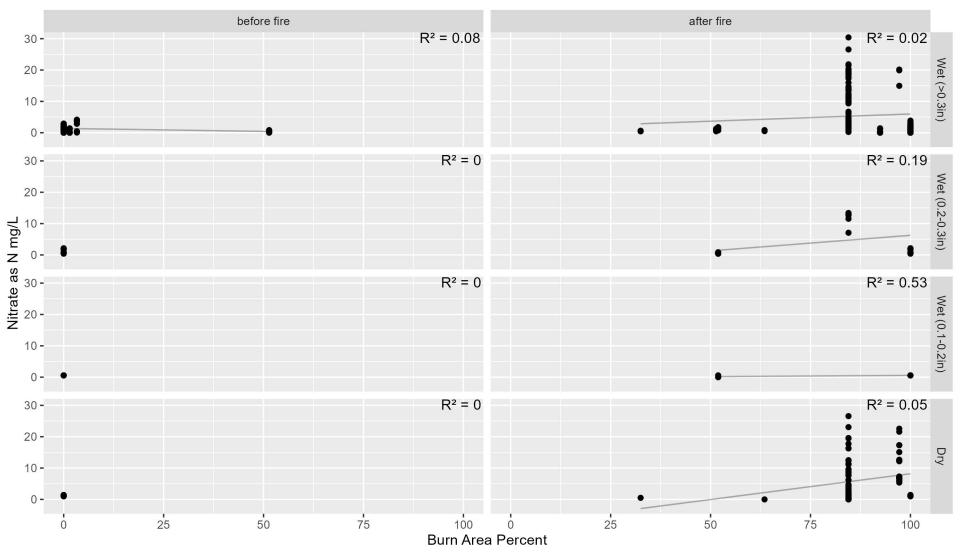

Burn Area vs. Dissolved Lead (Pb)


Burn Severity vs. Dissolved Lead (Pb)

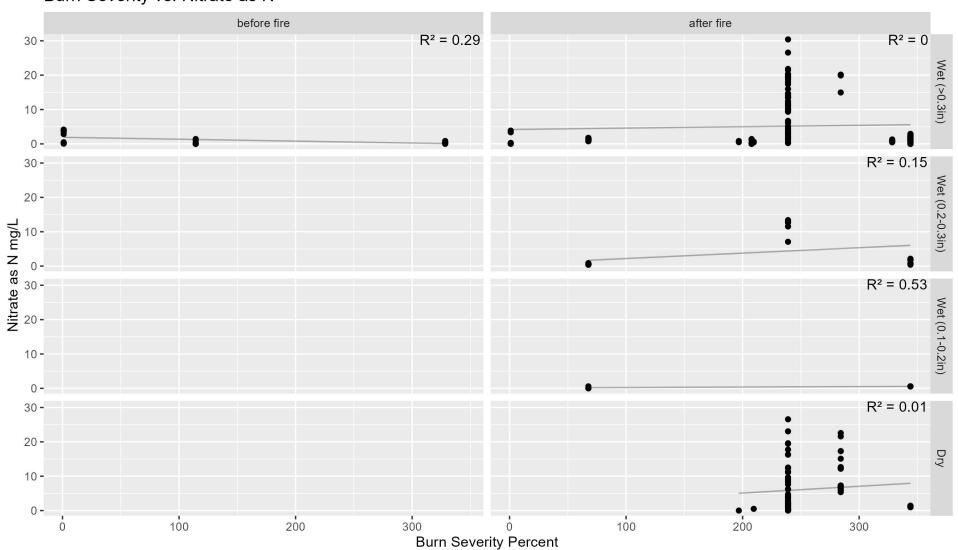

Burn Area vs. Dissolved Zinc (Zn)

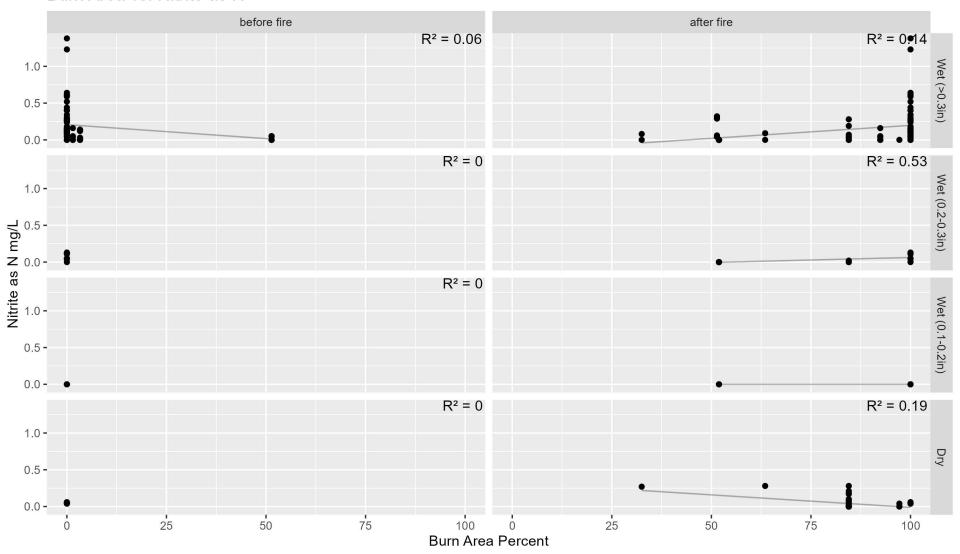


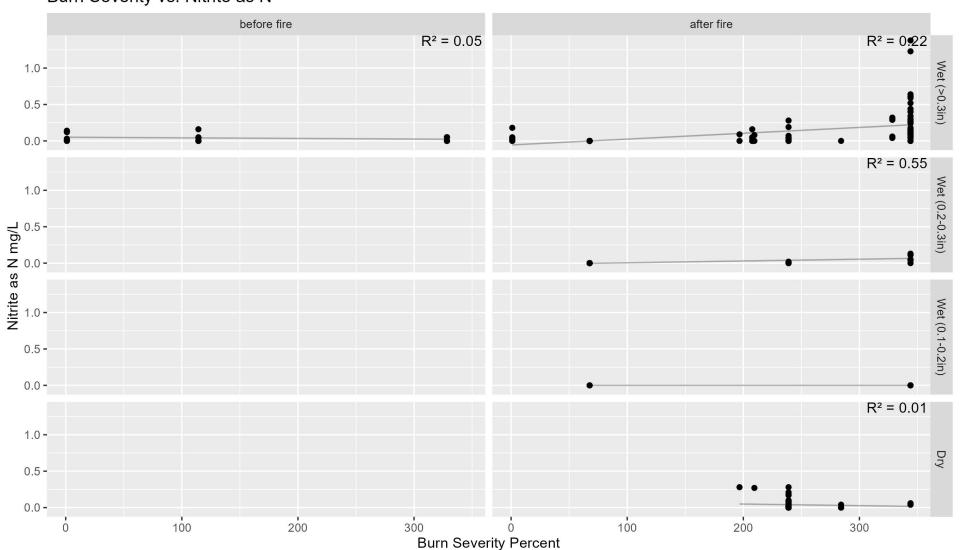
Burn Severity vs. Dissolved Zinc (Zn)

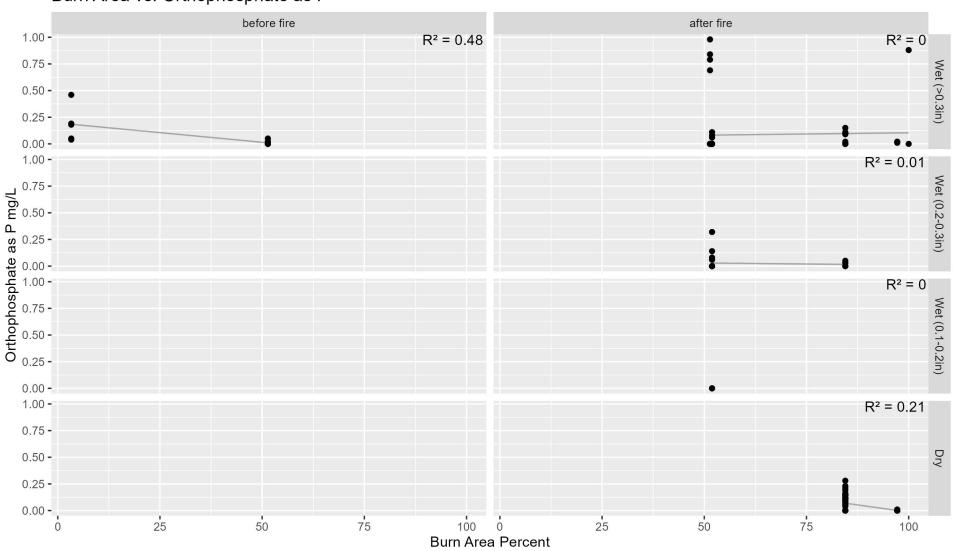


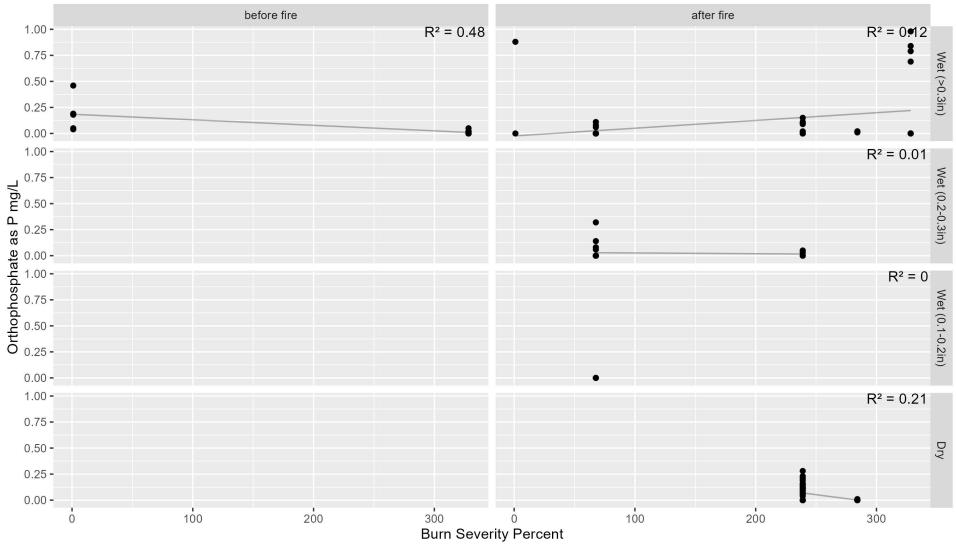
Burn Area vs. Nitrate + Nitrite as N

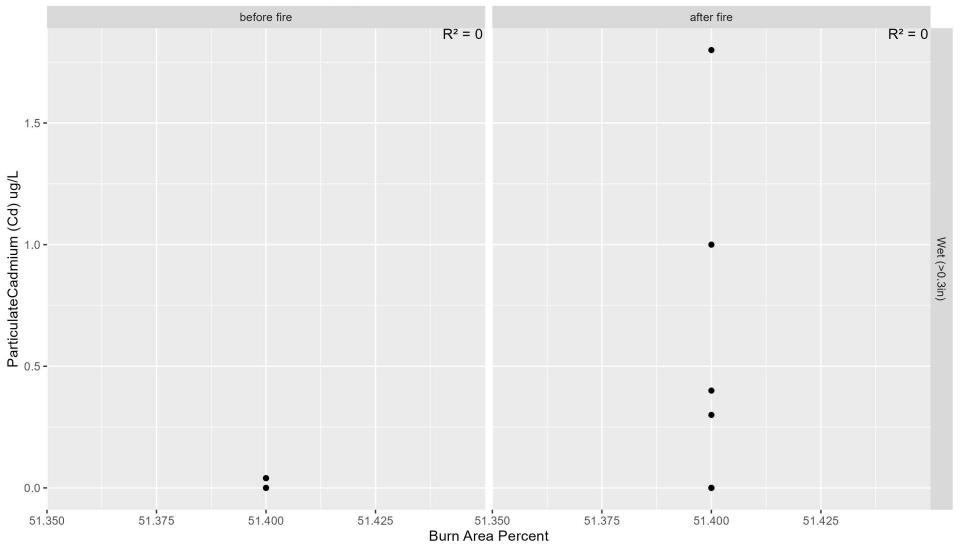


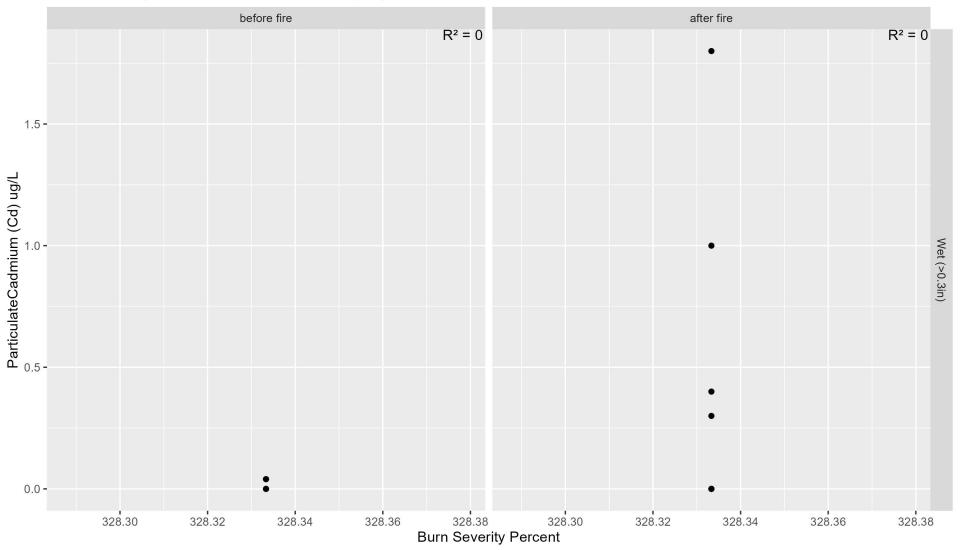

Burn Area vs. Nitrate as N

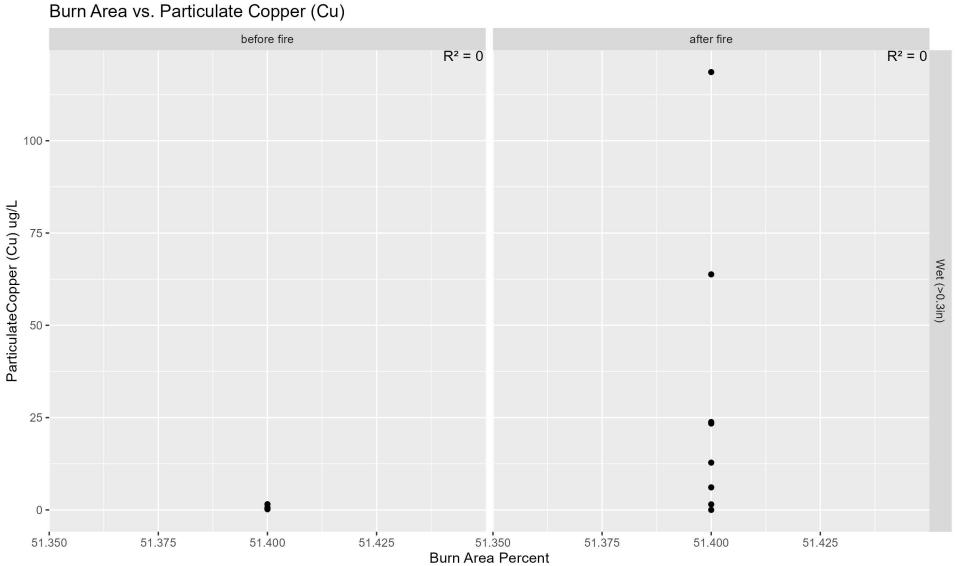

Burn Severity vs. Nitrate as N

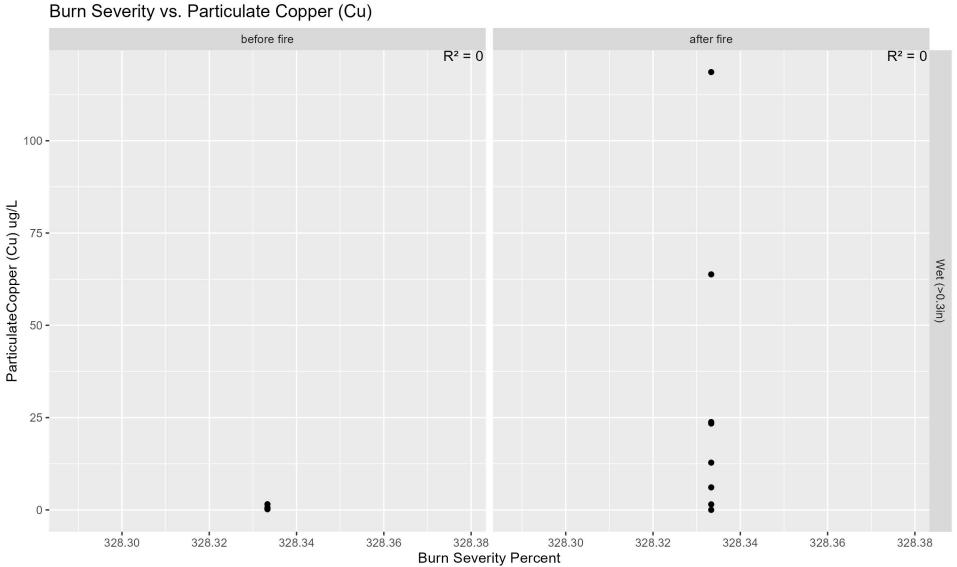

Burn Area vs. Nitrite as N

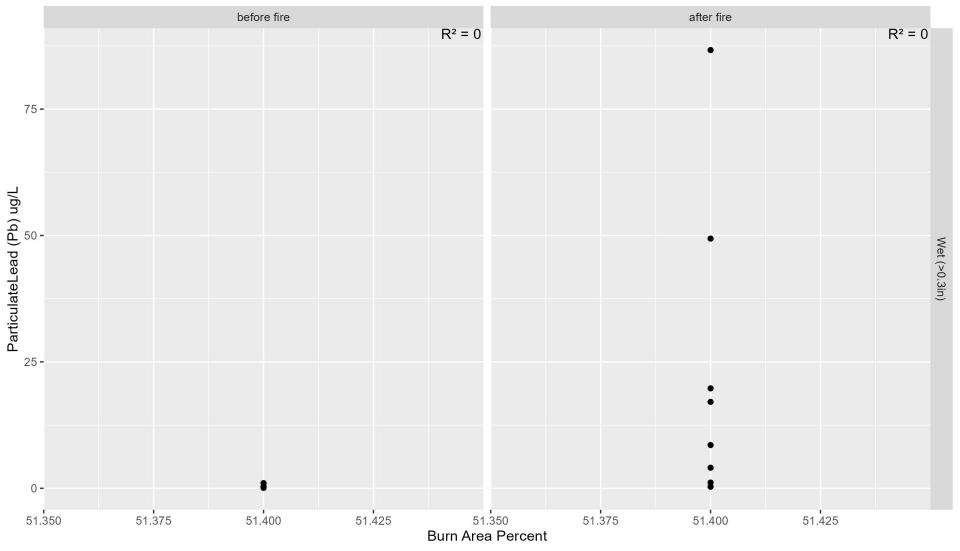

Burn Severity vs. Nitrite as N

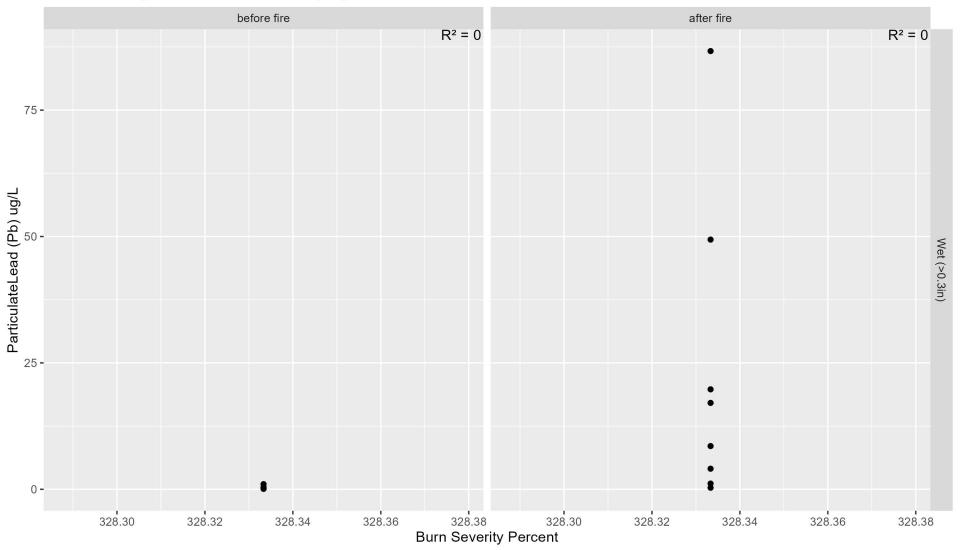

Burn Area vs. Orthophosphate as P


Burn Severity vs. Orthophosphate as P

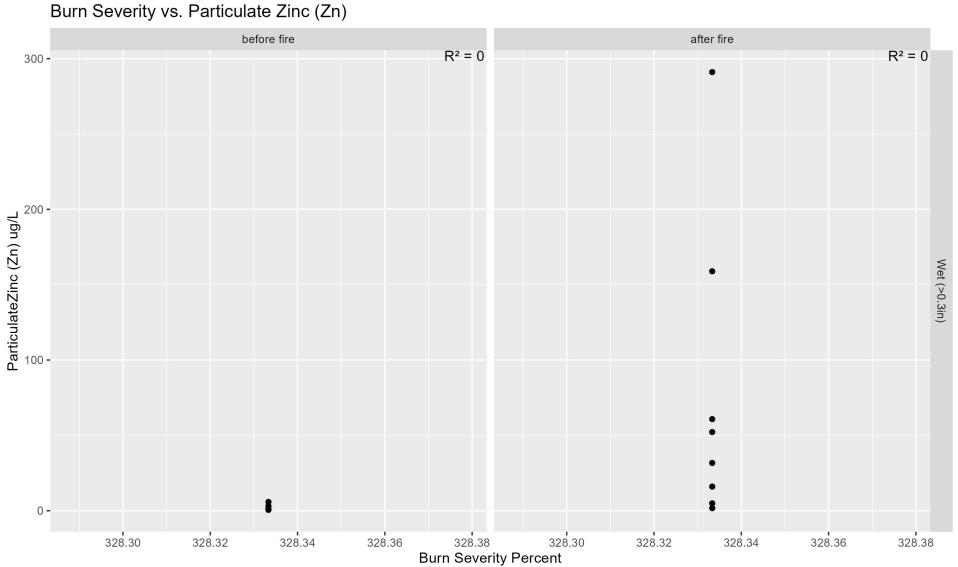



Burn Area vs. Particulate Cadmium (Cd)

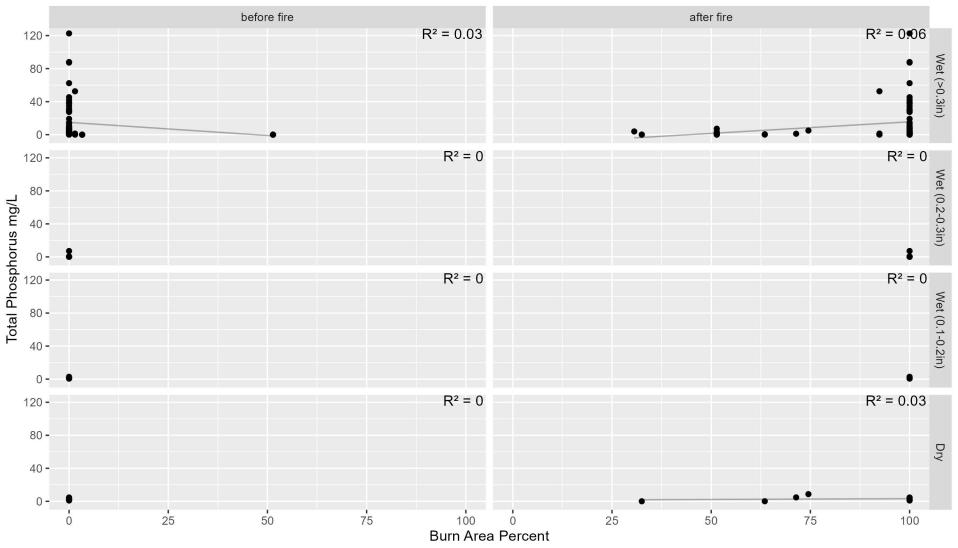

Burn Severity vs. Particulate Cadmium (Cd)



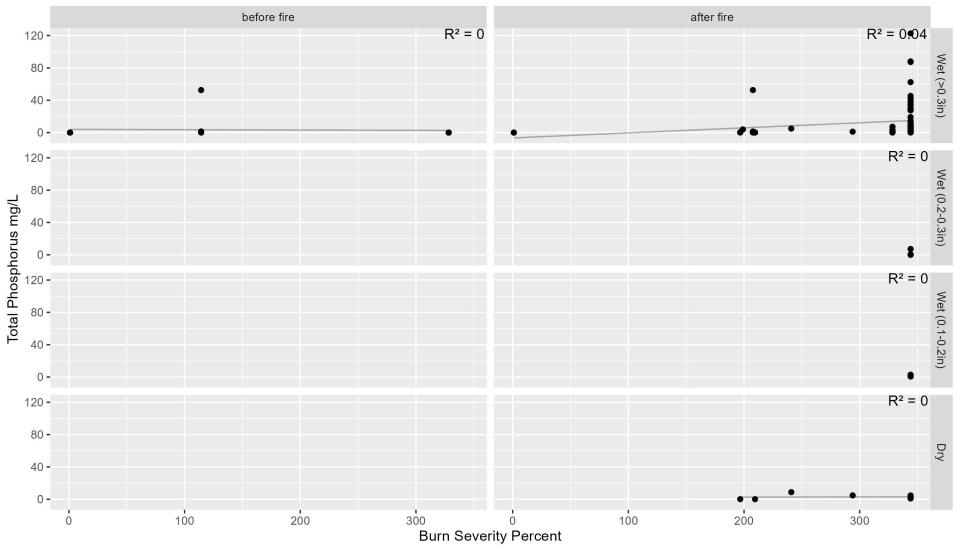
Burn Area vs. Particulate Lead (Pb)

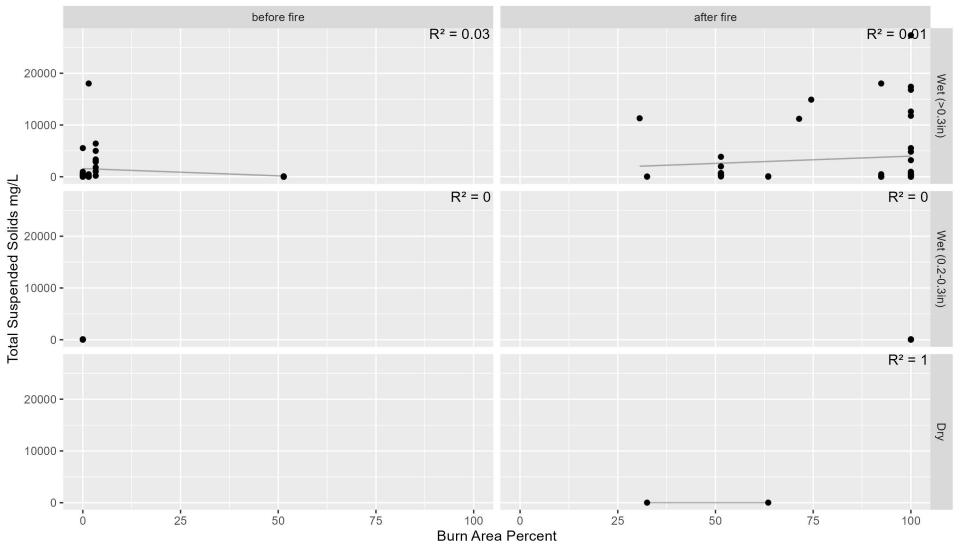


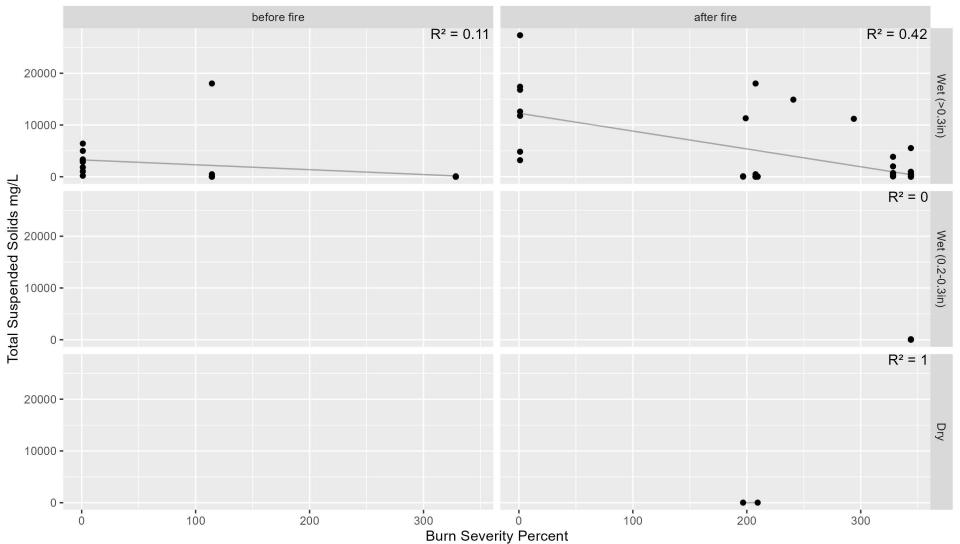
Burn Severity vs. Particulate Lead (Pb)

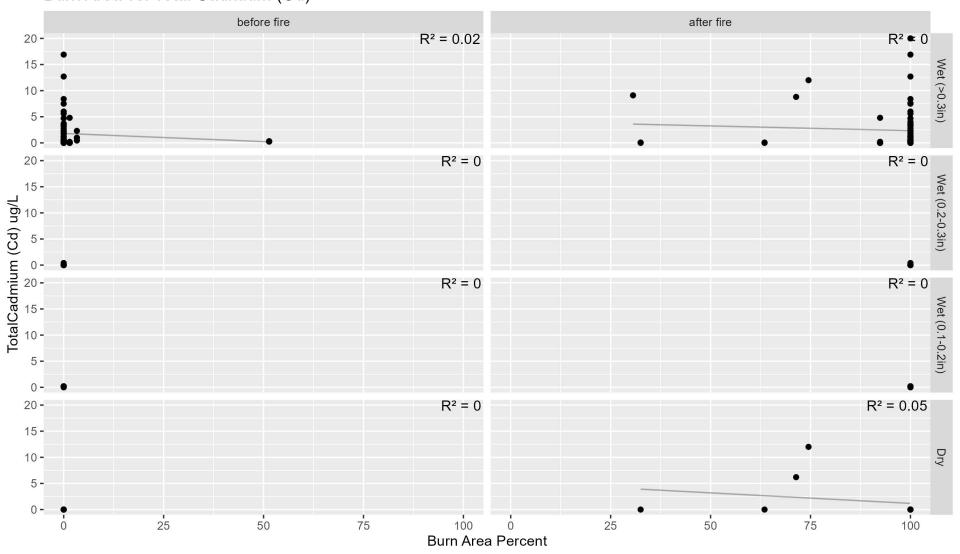


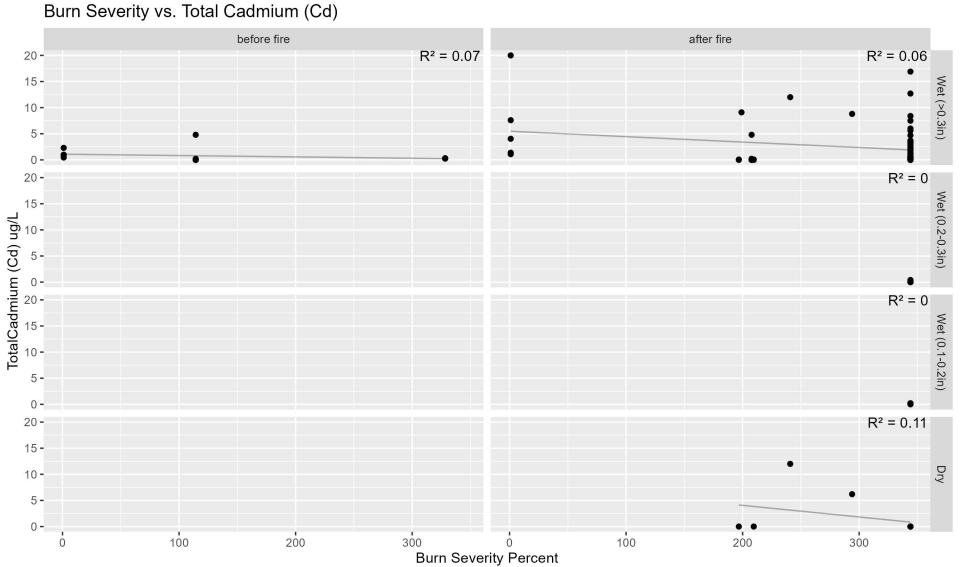
Burn Area vs. Particulate Zinc (Zn)



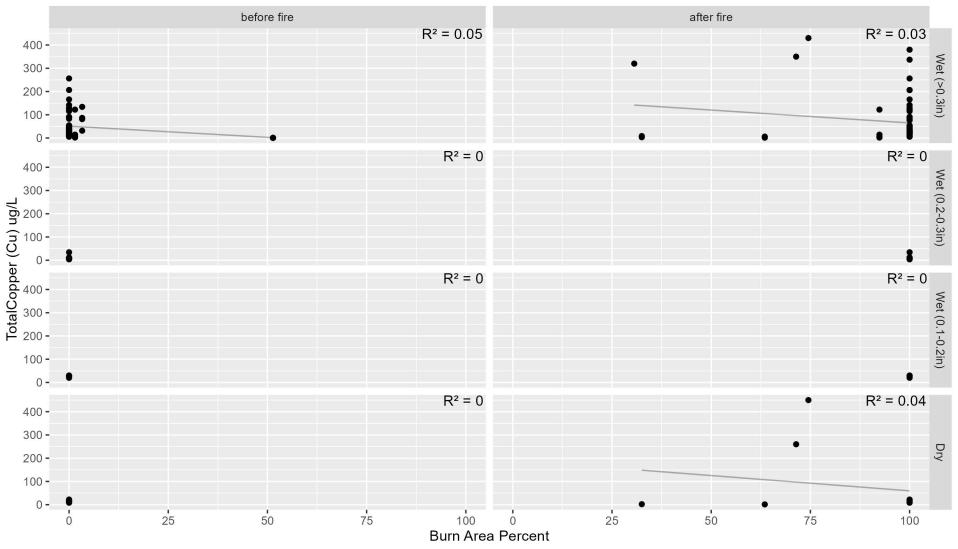

Burn Area vs. Total Phosphorus


Burn Severity vs. Total Phosphorus

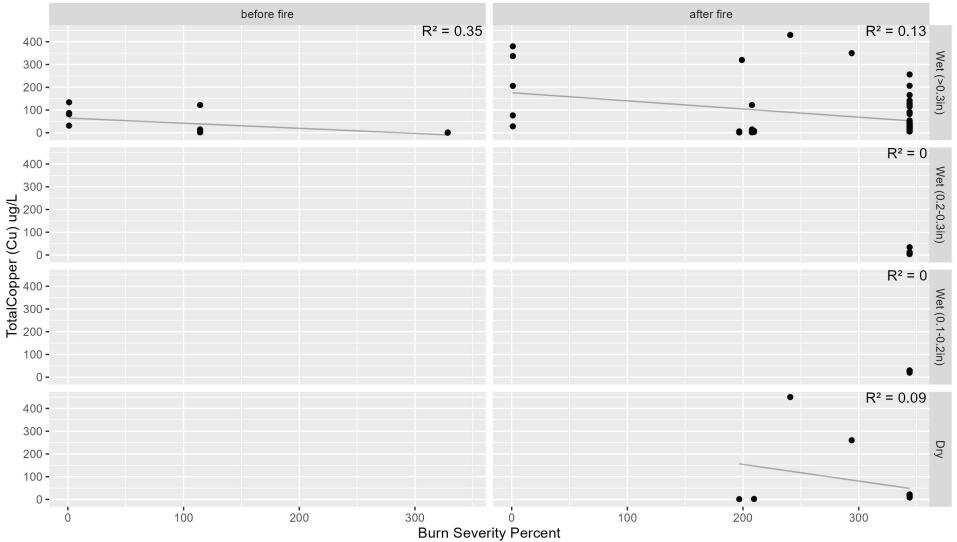

Burn Area vs. Total Suspended Solids



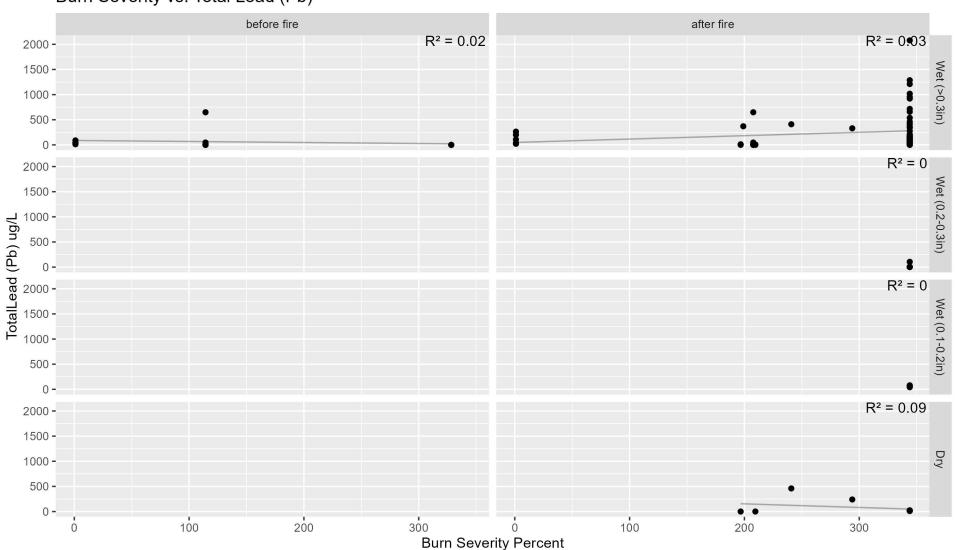
Burn Severity vs. Total Suspended Solids

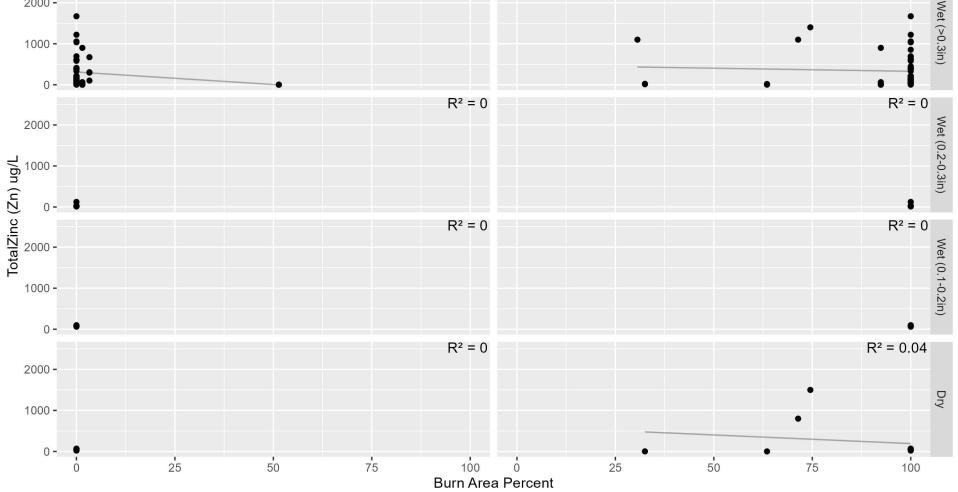


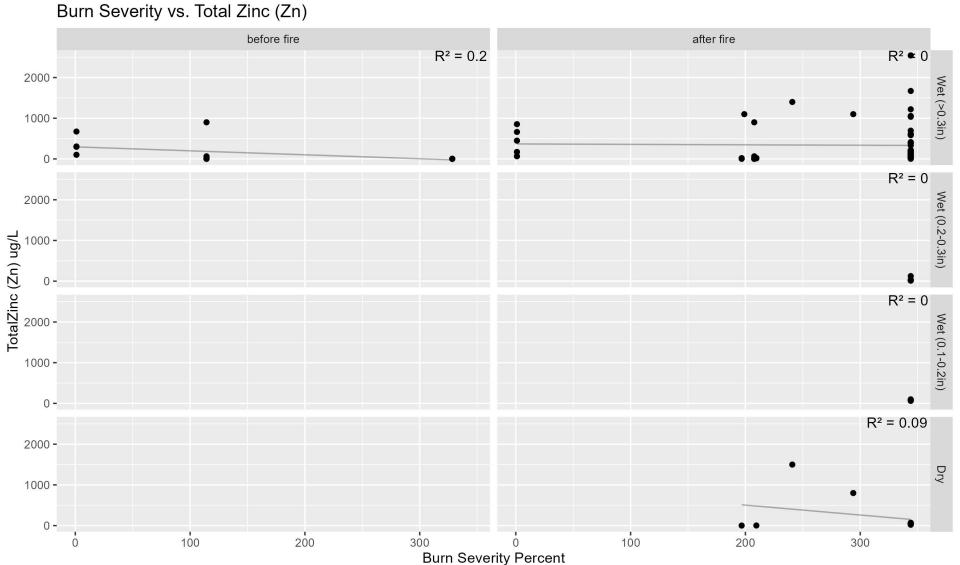
Burn Area vs. Total Cadmium (Cd)



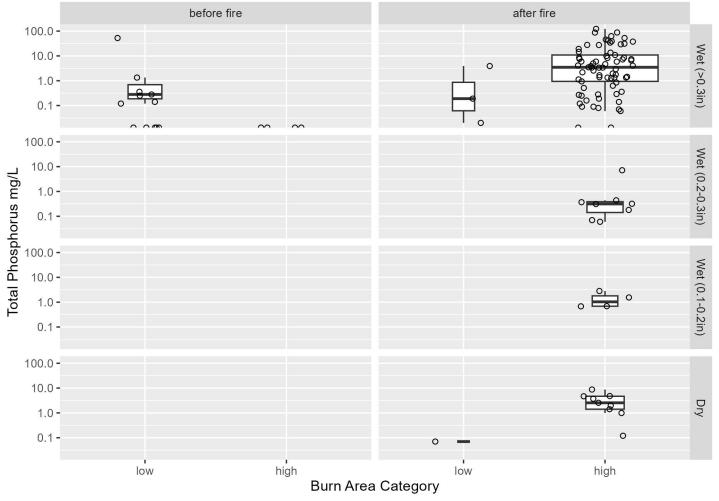
Burn Area vs. Total Copper (Cu)


Burn Severity vs. Total Copper (Cu)

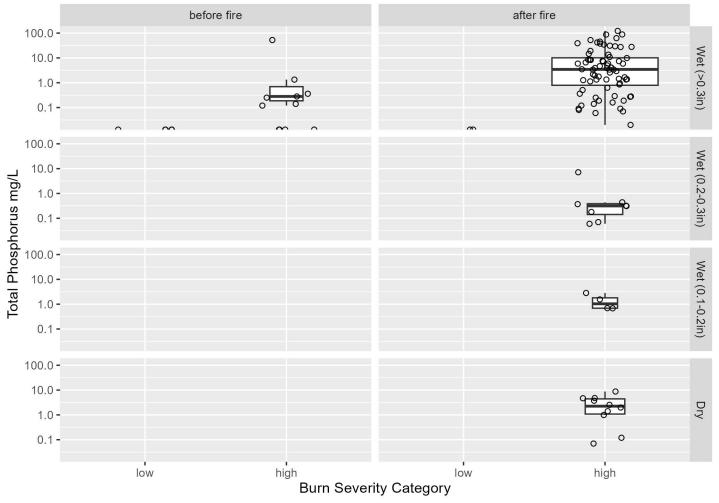

Burn Area vs. Total Lead (Pb)

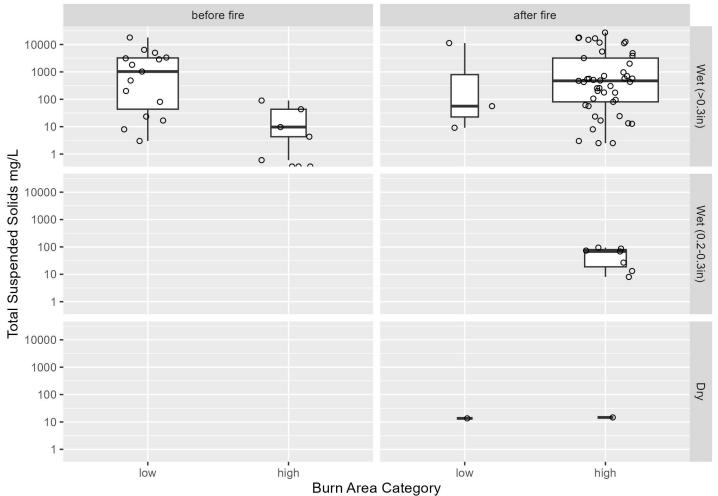


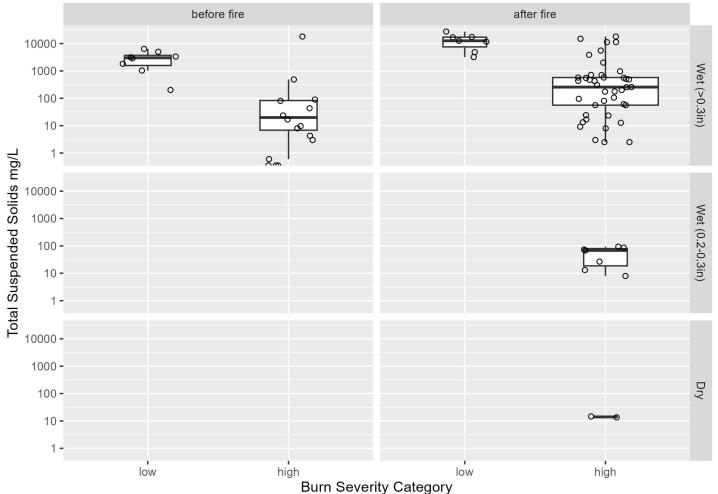
Burn Severity vs. Total Lead (Pb)

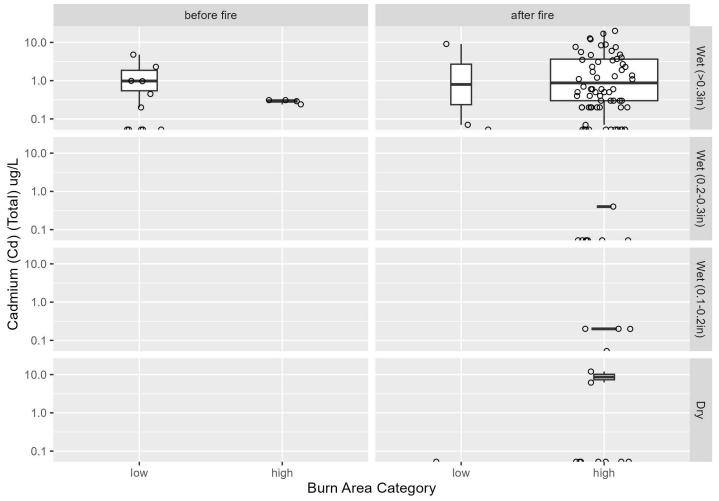


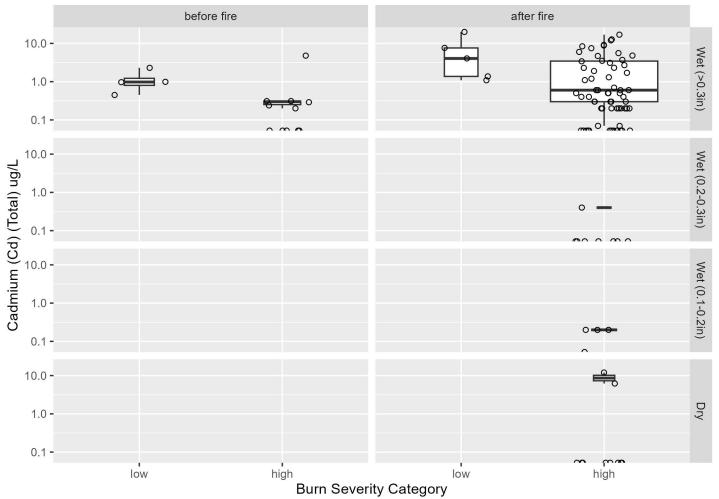
Burn Area vs. Total Zinc (Zn) before fire after fire $R^2 = 0.03$ R² ■ 0 2000 -1000 - $R^2 = 0$ $R^2 = 0$ 2000 -0 - 8

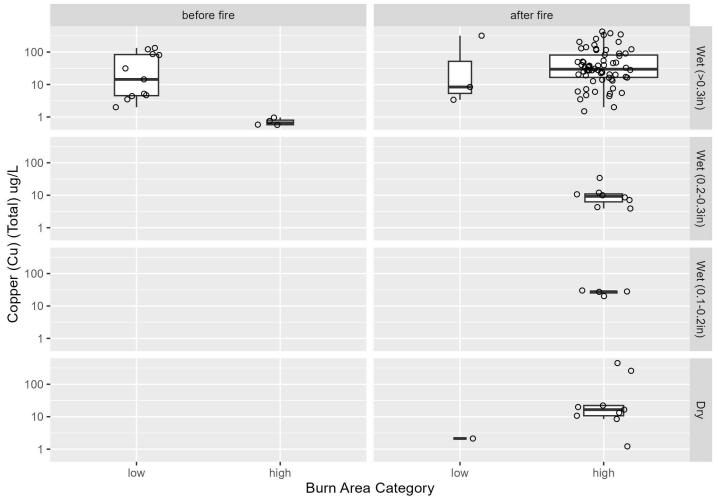


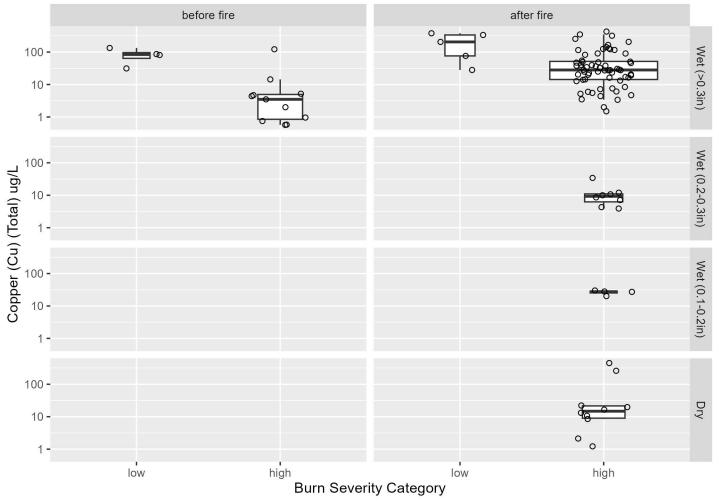

Burn Area vs. Total Phosphorus

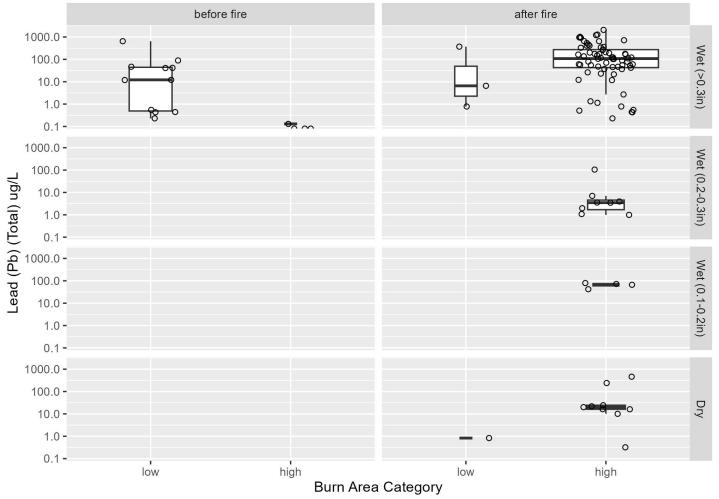

Burn Severity vs. Total Phosphorus

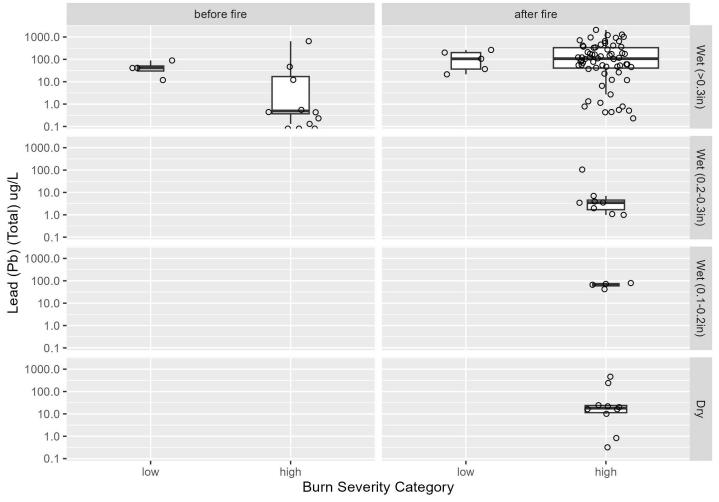

Burn Area vs. Total Suspended Solids

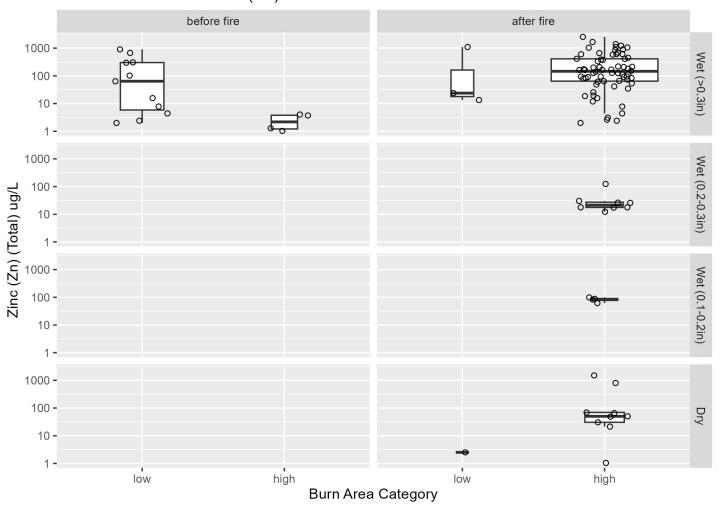

Burn Severity vs. Total Suspended Solids

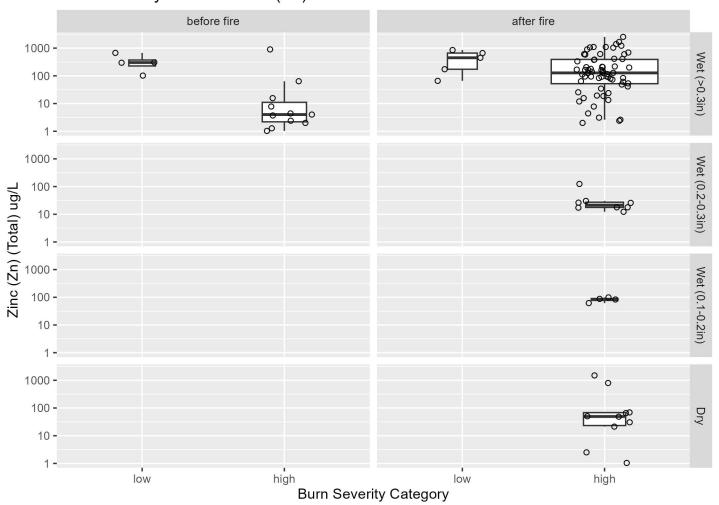

Burn Area vs. Total Cadmium (Cd)


Burn Severity vs. Total Cadmium (Cd)

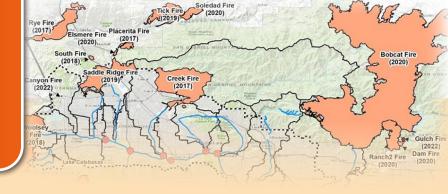

Burn Area vs. Total Copper (Cu)


Burn Severity vs. Total Copper (Cu)


Burn Area vs. Total Lead (Pb)


Burn Severity vs. Total Lead (Pb)

Burn Area vs. Total Zinc (Zn)


Burn Severity vs. Total Zinc (Zn)

ULAR Watershed Management Group

Fire Effects Study

Project Background

The Upper Los Angeles River Watershed Management Group (ULAR WMG) consists of 19 agencies that are responsible for upholding water quality standards for a vast area of 479 square miles, including compliance with Total Maximum Daily Loads (TMDLs) for nutrients and metals. In response to an increase in the frequency and intensity of wildfires in southern California and evidence correlating elevated pollutant loading in surface water with wildfires, the ULAR WMG designed the Fire Effects Study (Study) to examine wildfire impacts on water quality within its own watershed.

Fire Effects Study project manager presenting to breakout session attendees.

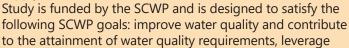
Monitoring and Modeling Progress

The Study team collects dry weather and wet weather water quality samples and conducts bioassessment monitoring to characterize the impacts of wildfires. Data collected will be input into models that predict wildfire and climate change impacts on water quality. Best management practice (BMP) models will also be used to better inform decisions for selecting BMPs and evaluating BMP performance, considering landscapes affected by wildfires and climate change.

Regional Collaboration

The Study team continues to involve numerous stakeholders conducting similar work with wildfires, such as the California State University Council on Ocean Affairs, Science, and Technology (COAST), Geosyntec, and Southern California Coastal Water Research Project (SCCWRP).

Objectives


- Address gaps in water quality data
- Model future effects due to increased frequency and severity of wildfires and climate change scenarios
- Characterize fate and transport of pollutants from wildfires
- Leverage regional funding
- Coordinate with stakeholders and regulatory agencies

Regulatory Engagement

The Study team has met routinely with the Los Angeles Regional Water Quality Control Board (LARWQCB) to provide updates on the progress of research and solicit the input of the LARWQCB regarding the potential regulatory actions that may be informed by the outcomes of the study.

Los Angeles County's Safe, Clean Water Program

In 2018, Los Angeles County voters approved Measure W, also known as the Safe, Clean Water Program (SCWP), to improve water quality, increase local water supply, and enhance communities. The

other funding to maximize SCWP goals, encourage innovation and adoption of new technology and practices, and invest in independent scientific research.

CLEAN