

San Gabriel Valley Council of Governments

AGENDA AND NOTICE OF THE SPECIAL JOINT MEETING OF THE WATER POLICY COMMITTEE & WATER TECHNICAL ADVISORY COMMITTEE (TAC)

Wednesday, October 17, 2018, 10:00 AM

Upper San Gabriel Valley Municipal Water District – 602 E. Huntington Dr., Monrovia, CA

Water Policy Committee

Chair: Judy Nelson City of Glendora

Vice-Chair: Gloria Crudgington City of Monrovia

Members

Claremont
Glendora
Monrovia
Rosemead
Sierra Madre
South Pasadena
West Covina
LA County District 1
Upper San Gabriel Valley
MWD

Water TAC

Chair: Tom LoveUpper San Gabriel Valley
Municipal Water District

Vice Chair: Alex Tachiki City of Monrovia

Members

Alhambra
Arcadia
Bradbury
Covina
Monrovia
Pomona
Sierra Madre
LA County DPW
San Gabriel Valley MWD
Upper San Gabriel Valley
MWD

Ex-Officio Members *LA County Sanitation Districts SG Basin Watermaster*

Thank you for participating in today's meeting. The Water Committee encourages public participation and invites you to share your views on agenda items.

MEETINGS: Regular Meetings of the Water Committee are held on the second Tuesday of each month at 10:00 AM at the Upper San Gabriel Valley Municipal Water District Offices (602 E. Huntington Drive, Suite B Monrovia, CA 91016). The agenda packet is available at the San Gabriel Valley Council of Government's (SGVCOG) Office, 1000 South Fremont Avenue, Suite 10210, Alhambra, CA, and on the website, www.sgvcog.org. Copies are available via email upon request (sgv@sgvcog.org). Documents distributed to a majority of the Committee after the posting will be available for review in the SGVCOG office and on the SGVCOG website. Your attendance at this public meeting may result in the recording of your voice.

PUBLIC PARTICIPATION: Your participation is welcomed and invited at all Water Committee and Water TAC meetings. Time is reserved at each regular meeting for those who wish to address the Committee. SGVCOG requests that persons addressing the Committee refrain from making personal, slanderous, profane or disruptive remarks.

TO ADDRESS THE COMMITTEE: At a regular meeting, the public may comment on any matter within the jurisdiction of the Committee during the public comment period and may also comment on any agenda item at the time it is discussed. At a special meeting, the public may only comment on items that are on the agenda. Members of the public wishing to speak are asked to complete a comment card or simply rise to be recognized when the Chair asks for public comments to speak. We ask that members of the public state their name for the record and keep their remarks brief. If several persons wish to address the Committee on a single item, the Chair may impose a time limit on individual remarks at the beginning of discussion. The Water Committee and Water TAC may not discuss or vote on items not on the agenda.

AGENDA ITEMS: The Agenda contains the regular order of business of the Water Committee and the Water TAC. Items on the Agenda have generally been reviewed and investigated by the staff in advance of the meeting so that the WRWG Committee can be fully informed about a matter before making its decision.

CONSENT CALENDAR: Items listed on the Consent Calendar are considered to be routine and will be acted upon by one motion. There will be no separate discussion on these items unless a Committee member or citizen so requests. In this event, the item will be removed from the Consent Calendar and considered after the Consent Calendar. If you would like an item on the Consent Calendar discussed, simply tell Staff or a member of the Committee.

In compliance with the Americans with Disabilities Act, if you need special assistance to participate in this meeting, please contact the SGVCOG office at (626) 457-1800. Notification 48 hours prior to the meeting will enable the SGVCOG to make reasonable arrangement to ensure accessibility to this meeting.

PRELIMINARY BUSINESS

- 1. Call to Order
- **2.** Roll Call
- **3.** Public Comment (*If necessary, the Chair may place reasonable time limits on all comments*).
- 4. Changes to Agenda Order: Identify emergency items arising after agenda posting and requiring action prior to next regular meeting.

CONSENT CALENDAR (It is anticipated that the Water Committee/TAC may act on the following matters)

- **5.** Water Committee/TAC Meeting Minutes Page 1 Recommended Action: Approve Water Committee/TAC meeting minutes.
- 6. Support for White Paper "Tapping into Available Capacity in Existing Infrastructure to Create Water Supply and Water Quality Solutions" Page 3

 Recommended Action: Recommend the Governing Board support the Las Virgenes Municipal Water District and Main San Gabriel Basin Watermaster White Paper "Tapping into Available"

Capacity in Existing Infrastructure to Create Water Supply and Water Quality Solutions."

PRESENTATION

7. Draft Three-Year Purchased Water Plan - Tony Zampiello, Executive Officer and Kelly Gardner, Assistant Executive Officer, Main San Gabriel Basin Watermaster *Recommended Action: For information only.*

LEGISLATIVE UPDATES

- **8.** Proposition 3 Overview Page 61 *Recommended Action: For information only.*
- **9.** State and Federal Legislation Updates/Summary Page 69 *Recommended Action: For information only.*

DISCUSSION ITEMS

10. Call for Workshop Topics – Los Angeles Regional Water Quality Control Board *Recommended Action: Discuss and provide direction to staff.*

UPDATE ITEMS

- **11.** E/WMP Updates
 - RH/SGR
 - East SGV
 - ULAR

Recommended Action: For information only.

- **12.** Water Boards Update
 - Recommended Action: For information only.
- **13.** Water Supply Update
 - Recommended Action: For information only.
- **14.** Stormwater Litigation Update

Recommended Action: For information only.

CHAIR'S REPORT

15. Meeting Recap with SCAG Sustainability Leadership Regarding Water/Stormwater Legislation *Recommended Action: For information only.*

ANNOUNCEMENTS

ADJOURN

SGVCOG Joint Water Policy Committee/TAC Unapproved Minutes

Date: September 11, 2018

Time: 10:00 AM

Location: Upper San Gabriel Valley Municipal Water District

602 E. Huntington Drive, Monrovia, CA

PRELIMINARY BUSINESS

1. Call to Order: The meeting was called to order at 10:04 A.M.

2. Roll Call

Water Policy Committee Members Present

Water Policy Committee Members Absent

M. Clark, Rosemead
 J. Nelson, Glendora
 G. Crudgington, Monrovia
 S. Pedroza, Claremont
 LA County District #1
 M. Spence, West Covina

J. Capoccia, Sierra Madre

D. Mahmud, South Pasadena

A. Fellow, USGVMWD

S Pedroza Claremont

Water TAC Members Absent

Water TAC Members PresentWater TAD. Dolphin, AlhambraBradburyV. Hevener, ArcadiaPomona

S. Costandi, Covina

A. Tachiki, Monrovia

J. Carlson, Sierra Madre

G. Osmena, LACDPW

E. Hills, SGVMWD

T. Love, P. Cortez, USGVMWD

Bradbury

Ex Officio Members Absent

Ex Officio Members Present

K. Ruffell, LACSD

A. Jimenez, K. Gardner, SG Watermaster

Guests

R. Gastelum O. Galang, Tetra Tech R. Tahir, TECs C. Dillion, El Monte

B. Lathrop, BradburyJ. StahlM. Lyons, Assemblymember HoldenB. Pence, Congresswoman Napolitano

Mary Ann Lutz, Former Mayor of Monrovia

SGVCOG Staff

K. Ward

3. Public Comment.

R. Tahir suggested changes to AB 2538 that clarify sections required versus voluntary. Additionally, AB 2538 should limit language that is not a requirement of the MS4 permit.

4. Changes to Agenda Order.

CONSENT CALENDAR

5. Water Committee/TAC Meeting Minutes

There was a motion to approve the minutes. (M/S: J. Capoccia /M. Clark). [MOTION PASSED]

AYES:	Alhambra, Arcadia, Covina, Glendora, LACDPW, Monrovia, Sierra Madre,
	Rosemead, SGVMWD, USGVMWD
NOES:	
ABSTAIN:	
ABSENT:	Bradbury, Claremont, Pomona, South Pasadena, West Covina, LA County
	District #1

PRESENTATION

- 6. Tapping into Available Capacity in Existing Infrastructure to Create Water Supply and Water Quality Solutions Overview: White Paper Presentation David W. Pedersen, General Manager, Las Virgenes Municipal Water District
 - D. Pedersen presented on this item. The group discussed general interest in the concept presented. There was concurrence that the group discuss endorsing the concept of the white paper at the next meeting, as well as providing a letter of support. D. Pedersen will send Phase 1 of the white paper and a copy of the presentation to K. Ward to distribute.

LEGISLATIVE UPDATES

7. 2017-2018 Legislative Summary

K. Ward and P. Cortez reported on this item.

UPDATE ITEMS

- **8.** E/WMP Updates.
 - RH/SGR: A. Tachiki reported on this item.
 - East SGV: No report given.
 - ULAR: D. Dolphin and G. Osmena reported on this item. D. Dolphin gave an update on the LRS project.
- **9.** Water Boards Update
 - J. Nelson reported on this item.
- 10. Water Supply Update
 - T. Love and K. Gardner reported on this item.
- 11. Stormwater Litigation Update
 - G. Crudgington reported on this item.

CHAIR'S REPORT

- **12.** Meeting with Water Board Chair Madelyn Glickfeld
 - J. Nelson reported on this item. There was concurrence from the group that a discussion on topics for the Regional Board to consider for workshops should be placed on the next Water Committee agenda.

Due to a conflict with the meeting room, the October 9th Water Committee meeting will need to be moved. The group agreed to move the meeting to October 17th.

ANNOUNCEMENTS

13. 2018 San Gabriel Valley Water Forum: Tuesday, September 18, 2018

A. Fellow announced the Upper District's 2018 WaterFest will be on October 13 from 10 AM to 2 PM at the Arcadia County Park.

ADJOURN

The meeting adjourned at 11:53 a.m.

REPORT

DATE: October 17, 2018

TO: Governing Board

Water Committee/TAC

FROM: Marisa Creter, Executive Director

RE: SUPPORT FOR WHITE PAPER "TAPPING INTO AVAILABLE

CAPACITY IN EXISTING INFRASTRUCTURE TO CREATE WATER

SUPPLY AND WATER QUALITY SOLUTIONS"

RECCOMENDED ACTION

Recommend the Governing Board adopt Resolution 18-58 to support the Las Virgenes Municipal Water District and Main San Gabriel Basin Watermaster White Paper "Tapping into Available Capacity in Existing Infrastructure to Create Water Supply and Water Quality Solutions."

BACKGROUND

In September, the SGVCOG Water Policy Committee and Water TAC received a presentation from David Pedersen, General Manager of the Las Virgenes Municipal Water District on the White Paper titled "Tapping into Available Capacity in Existing Infrastructure to Create Water Supply and Water Quality Solutions." The purpose of the White Paper, now in Phase 2, is to explore the opportunity for controlled and strategic integration of the region's existing stormwater and wastewater systems to achieve multiple benefits, such as enhancing the quality of receiving waters in Los Angeles County, and increasing water supplies available for recycling. Based on the presentation, the Water Committee and TAC members were in favor of showing support for the White Paper.

Phase 1 of the White paper was completed in May 2018 and highlighted the merits of diverting urban runoff and first flush stormwater to the wastewater system. Additionally, Phase 1 identified a greater focus on engaging a much broader group of stakeholders for Phase 2.

SUPPORT

The following agencies are in support or directing participating in the guidelines outlined by the White Paper:

- Las Virgenes Municipal Water District
- Los Angeles County Sanitation Districts
- Los Angeles County Department of Public Works
- · Los Angeles Department of Water and Power
- LA Sanitation and Environment
- Main San Gabriel Basin Watermaster
- · Water Replenishment District of Southern California
- Calleguas Municipal Water District
- Central Basin Municipal Water District

- Pasadena Water and Power
- Three Valleys Municipal Water District
- · City of Torrance
- Upper San Gabriel Valley Municipal Water District

NEXT STEPS

The Las Virgenes Municipal Water District and Main San Gabriel Basin Watermaster are finalizing the scope of work for the next phase of the study, as well as identifying participating agencies to prepare a cooperative funding agreement. If the Governing Board ultimately supports the White Paper, the SGVCOG will provide support for any grant funding opportunities that arise during the implementation of the White Paper. Additionally, in the event that Measure W passes in November, SGVCOG Staff will work with Los Angeles County to ensure that the County incorporates the White Paper's strategies to leverage existing infrastructure as a cost-effective means to achieve the Safe Clean Water Program's objectives.

Prepared by:

Katie Ward

Senior Management Analyst

Approved by:

Marisa Creter
Executive Director

ATTACHMENT

Attachment A – Resolution 18-58

Attachment A

RESOLUTION NO. 18-58

A RESOLUTION OF THE GOVERNING BOARD OF THE SAN GABRIEL VALLEY COUNCIL OF GOVERNMENTS (SGVCOG) TO SUPPORT THE LAS VIRGENES MUNICIPAL WATER DISTRICT AND MAIN SAN GABRIEL BASIN WATERMASTER WHITE PAPER "TAPPING INTO AVAILABLE CAPACITY IN EXISTING INFRASTRUCTURE TO CREATE WATER SUPPLY AND WATER QUALITY SOLUTIONS."

WHEREAS, the SGVCOG recognizes the need to meet State regulations and the Federal Clean Water Act in order to improve water quality; and

WHEREAS, the Las Virgenes Municipal Water District and Main San Gabriel Basin Watermaster jointly prepared a White Paper entitled "Tapping into Available Capacity in Existing Infrastructure to Create Water Supply and Water Quality Solutions;" and

WHEREAS, the purpose of the White Paper is to explore the opportunity for controlled and strategic integration of the region's existing stormwater and wastewater systems to achieve multiple benefits, such as enhancing the quality of receiving waters in Los Angeles County, and increasing water supplies available for recycling; and

NOW, THEREFORE, BE IT RESOLVED, that by the adoption of this Resolution, the SGVCOG supports the White Paper as follows:

- **SECTION 1.** Exhibit A to this Resolution entitled "Tapping into Available Capacity in Existing Infrastructure to Create Water Supply and Water Quality Solutions," incorporated herein by reference, is hereby adopted by the Governing Board.
- **SECTION 2.** The SGVCOG supports the White Paper in all phases, and the related elements inasmuch as the White Paper seeks to support stormwater management, water quality and water supply objectives to improve the quality of life of San Gabriel Valley residents.
- **SECTION 3.** Member agencies have the opportunity to adopt the "Tapping into Available Capacity in Existing Infrastructure to Create Water Supply and Water Quality Solutions."
- **SECTION 4.** The Executive Director shall certify to the adoption of this Resolution and shall enter this Resolution into the official book of resolutions. This Resolution is effective upon its adoption.

PASSED AND ADOPTED by the Governing Board of San Gabriel Valley Council of Governments, in the County of Los Angeles, State of California, on the 18th day of October 2018.

San Gabriel	Valley Council of	Government
Cynthia Ster	rnguist. President	

•	hereby certify that Resolution 18-58 was adopted at a regular ld on the 18th day of October 2018 by the following roll call
AYES:	
NOES:	
ABSENT:	
	Marisa Creter, Secretary

I, Marisa Creter, Executive Director and Secretary of the Board of Directors of the San Gabriel

Attest:

Exhibit A

WHITE PAPER

FINAL VERSION

Tapping into Available Capacity in Existing Infrastructure to Create Water Supply and Water Quality Solutions

Prepared for

Las Virgenes Municipal Water District Main San Gabriel Basin Watermaster

May 2018

CH2M HILL Engineers, Inc. 1000 Wilshire Suite 2100 Los Angeles, CA 90017

Executive Summary

Scope and Objective of White Paper

Recent implementation of multi-benefit stormwater projects and programs have been gaining momentum throughout Southern California, especially within Los Angeles County. These projects are intended to provide benefits of increasing water supply, improving water quality, and providing tangible community benefits. However, unless these projects capture and infiltrate water in areas that augment groundwater, or the captured stormwater is used directly on-site, then no water supply benefit is achieved. This White Paper examines a possible alternative and solution: to establish a controlled and strategic integration (interconnection) of the existing stormwater system with the wastewater (sewage) collection system (maximize use of existing infrastructure), treating dry-weather urban runoff and "first flush" flows (improve water quality) through the 21 wastewater treatment plants (WWTPs) in Los Angeles County. This strategy would then, in turn, create a potential drought-proof water supply in the form of non-potable and potable reuse (increase water recycling). This White Paper also found that only 28-percent of the Los Angeles Basin directly overlies a groundwater basin that can support the capture and infiltration of stormwater to supplement water supplies (groundwater augmentation). This 28percent is further limited by existing hardscape and immovable structures such as homes, buildings and other impermeable (hardscape) surfaces. In order for the "Clean, Safe Water" fee proposal to maximize its stated goals of both water supply and quality, this alternative scenario should be considered and evaluated.

The purpose of this White Paper is to explore leveraging available capacity in the WWTPs for treating urban runoff/stormwater (dry-weather flows and initial stormwater runoff containing highest concentration of pollutants) to generate a new source of recycled water. This White Paper provides a high-level analysis to understand the possibilities of connecting the stormwater system to the wastewater collection system through a control element either directly to the influent of a WWTP or to a WWTP via the wastewater collection system.

Figure ES-1. Conceptualization of Connecting Stormwater Infrastructure to Water Recycling System

Either alternative would allow the wastewater agency to control the diversion of polluted urban runoff/stormwater that could then be treated at the WWTP to generate additional water for recycling. Figure ES-1 depicts a conceptualization of this approach.

A permissive or controlled stormwater connection to the wastewater collection system for treatment and reuse presents multiple benefits opportunities including:

- Increase in local water supply through capture and use of stormwater that would otherwise be wasted to the ocean
- Generate continuous low-cost water supply source, which is available during dry-weather
- Improve water quality of the receiving waters thereby helping agencies achieve MS 4 regulatory compliance
- Capture urban runoff/stormwater which can be treated and used for recharge of aquifers and for other beneficial uses, such as irrigation

BI0423181614LAC Page 10 of 79

- Maximize the use of existing wastewater collection systems, treatment, and reclamation plant infrastructure to generate recycled water supplies
- Expand water reuse which provides a reliable, local water supply that reduces vulnerability to droughts and other water supply constraints

Approach

The study approach included the following steps:

- Review of stormwater capture and recycled water studies within LA County
- Gather and synthesize data of flows and capacities of the WWTPs to understand the available capacity of the wastewater treatment system
- Evaluate the effect of conservation in the post-drought period to understand additional capacities in the treatment systems. Specifically, pre- and post-drought flow comparisons were made.
- Map existing infrastructure including WWTPs, wastewater collection and storm drain systems, low flow diversions (LFDs), and recharge prone areas to geographically show the proximity of conveyance and treatment systems
- Understand pathways, benefits, and challenges for connecting the storm drain system to the wastewater collection system

Findings

Within Los Angeles County, there are approximately 21,000 miles of sanitary sewers and 3,300 miles of County-owned storm drains, with thousands of miles of additional city-owned sewer and drainage systems. The total rated capacity of the 21 WWTPs within Los Angeles County is about 1.4 million acrefeet per year (AFY). Out of the total capacity, about 61 percent of the capacity has been utilized and approximately 39 percent is available capacity during the post-drought period of 2017. A comparison of pre-versus post-drought flows show that about 11 percent of the total WWTP capacity (~103,000 AFY) has been conserved as a result of the drought and water conservation programs. Currently, approximately 231,000 AFY of recycled water is used throughout the county for both potable and non-potable uses; future projects are expected to double the existing uses as shown in Figure ES-2.

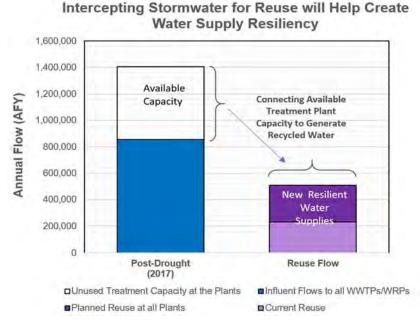


Figure ES-2. Used and Available WWTP Capacities and Reuse Supplies

BI0423181614LAC Page 115-of 70

Summary and Conclusions

This screening level analysis indicates that the careful evaluation of some of the available capacities of the WWTPs could be potentially tapped into to treat urban runoff/stormwater and generate additional recycled water supplies. Also, conservation programs during the drought have reduced flows into the WWTPs, creating additional untapped capacities of the WWTPs. Throughout the county, there are a number of potential diversion locations as shown in Figure ES-3. To help achieve Los Angeles County's stated water quality and supply objectives, and to maximize the benefit of both ratepayer fees and the use of existing infrastructure, collection, storage, and permissive interconnection of the stormwater and sewage collection systems should carefully be evaluated as a viable alternative.

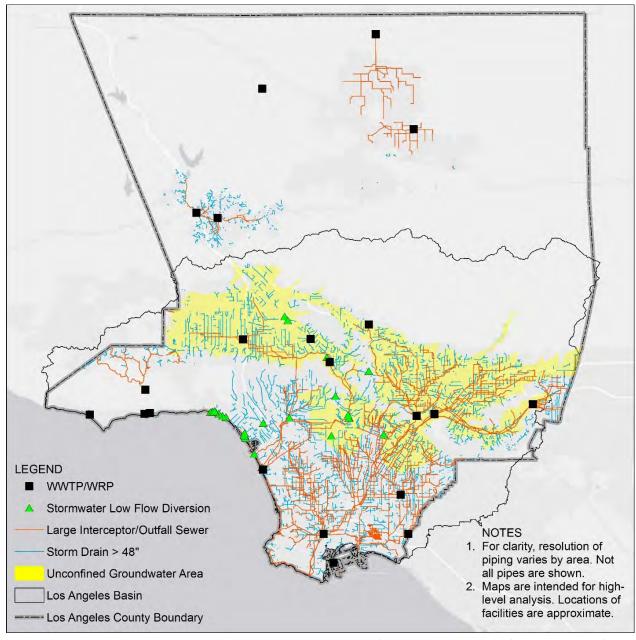


Figure ES-3. Recharge Areas, WWTPs, and Storm Drain Facilities

Contents

Sect	ion		Page	
Exe	cutive Sum	nmary	ES-1	
Con	tents		iii	
Acre	onyms and	Abbreviations	v	
1	Backgrou	nd and Objectives	1-1	
2	Inventory	of Current Studies	2-1	
	2.1	Los Angeles County	2-1	
		2.1.1 Los Angeles County Department of Public Works 2018 Water		
		Resilience Plan	2-1	
		2.1.2 Bureau of Reclamation 2016 Los Angeles Basin Conservation Study	2-1	
		2.1.3 Greater Los Angeles County 2013 Integrated Regional Water		
		Management Plan	2-2	
	2.2	Regional	2-2	
	2.2.1	MWD Integrated Water Resource Plan 2015 Update	2-2	
	2.2.2	WRD 2012 Stormwater Recharge Feasibility and Pilot Project		
		Development Study	2-3	
2.3	City of Lo	s Angeles	2-4	
		2.3.1 2018 One Water LA 2040 Plan (Draft)	2-4	
	2.3.2	City of Los Angeles 2015 Sustainable City Plan	2-4	
	2.3.3	LADWP 2015 Stormwater Capture Master Plan	2-5	
		2.3.4 LADWP 2012 Recycled Water Master Planning Documents	2-5	
3	Inventory	of Sanitary Flows and Downstream Recycled Uses	3-1	
3-1	Existing V	Vastewater Collection and Treatment Infrastructure	3-1	
		3.1.1 Sanitation Districts of Los Angeles County	3-1	
		3.1.2 Consolidated Sewer Maintenance District of Los Angeles County	3-2	
	3.1.3 City of Los Angeles Bureau of Sanitation			
		3.1.4 City of Burbank	3-6	
		3.1.5 Las Virgenes Municipal Water District	3-6	
4	Inventory	of Storm Drain Systems	4-1	
4-1	Regulator	ry Background	4-1	
	4-2 Existing Storm Drain Infrastructure			
	4-3	Existing Diversions	4-1	
5	Results a	nd Findings	5-1	
	5-1	Infrastructure Mapping	5-1	
	5-2	Effects of Conservation on Sewer Flows	5-2	
	5-3	Recycled Water Capacity Evaluation	5-2	

BI0423181614LAC Page 14 of 70

6	Pathways,	, Benefits, and Challenges for Permissive Integration	6-1
	6.1	Regulatory Pathways	6-1
		6.1.1 SB 485, Hernandez – County Sanitation District Act	6-1
		6.1.2 LACSD Dry-Weather Urban Runoff Diversion Policy	6-1
	6.2	Benefits	6-2
		6.2.1 Water Quality	6-2
		6.2.2 Water Supply	6-2
		6.2.3 Infrastructure	6-3
		6.2.4 Pilot Testing for Wet Weather Diversion	6-3
	6.3	Challenges	6-3
		6.3.1 Collection System Capacity	6-3
		6.3.2 Operation and Maintenance	6-3
		6.3.3 Regulatory	6-4
7	Summary	and Conclusions	7-1
8	Reference	s	8-1
Арр	endix		
Α	Exhibit	s	
Tab	les		
3-1	Municipal	Wastewater Treatment and Reuse Flows within Los Angeles	3-5
4-1	Existing LF	Ds within Los Angeles County	4-2
6-1	LACSD Ap	proximate Capital and Operation Cost of LFDs	6-4
Figu	ires		
1-1	Conceptua	alization of Connecting Stormwater Infrastructure to Wastewater	
Trea	atment Plar	nt	1-2
2-1	Summary	of Future Resource Development Unit Costs ¹	2-3
5-1	Pre- and P	Post-Drought Influent Sewer Flows	5-2
5-2	Used and	Unused Canacity and Reuse Supplies	5-3

Acronyms and Abbreviations

AFY acre-feet per year

Caltrans California Department of Transportation

CSMD Consolidated Sewer Maintenance District of Los Angeles County

GLAC Greater Los Angeles County

IRP Integrated Water Resources Plan

JWPCP Joint Water Pollution Control Plant

LACDPW Los Angeles County Department of Public Works

LOS Angeles County Flood Control District

LACSD Sanitation Districts of Los Angeles County

LADWP Los Angeles Department of Water and Power

LASAN City of Los Angeles Bureau of Sanitation

LFD low flow diversion

LVMWD Las Virgenes Municipal Water District

mgd million gallons per day

MS4 municipal separate storm sewer system

MWD Metropolitan Water District of Southern California

O&M operation and maintenance
RWMP Recycled Water Master Plan

SB Senate Bill

TMDL total maximum daily load

USBR United States Bureau of Reclamation
WBMWD West Basin Municipal Water District

WRD Water Replenishment District of Southern California

WRP Water Reclamation Plant

WWTP Wastewater Treatment Plant

BI0423181614LAC

Background and Objectives

As Los Angeles County becomes less reliant on imported water, further development of local supplies is required to bridge the gap between water supply and demand. Stormwater capture and recycled water projects are repeatedly identified to have the greatest regional impact to generate local water supplies. Recent implementation of multi-benefit stormwater projects are intended to provide benefits of increasing water supply, improving water quality, and, in some instances, providing tangible community benefits.

The Los Angeles Basin Conservation Study found that, on average, centralized stormwater capture contributes to 195,000 acre-feet per year (AFY) of groundwater recharge within Los Angeles County (USBR 2016). In addition to the large, centralized facilities, many small, decentralized facilities capture and infiltrate stormwater throughout the county. However, unless these projects capture and infiltrate water on-site in areas that augment groundwater or the captured stormwater is used directly on-site, then no water supply benefit is achieved. Unfortunately, only 28-percent of the Los Angeles Basin is underlain by an unconfined aquifer. This area is also highly developed and impervious, further reducing the space available for infiltration. Therefore, any stormwater infiltrated above confined aquifers does not generate a water supply benefit unless it is locally reused. Due to the limited area of unconfined aquifer in the region, space for centralized or decentralized stormwater capture for groundwater recharge is limited. Excess stormwater runoff that cannot be contained at capture facilities is discharged to the Pacific Ocean via rivers and tributaries. Within the last 20 years, flows from Los Angeles County to the ocean historically range from 162,000 to 1,700,000 AFY, with over half of the annual flows greater than 700,000 AFY (MWD 2018).

In addition to groundwater replenishment through stormwater capture, Los Angeles County has a history of using recycled water for groundwater augmentation beginning with 1962 with the Montebello Forebay, California's oldest groundwater recharge project. Recycled water is utilized throughout the county as both a source of water and a way to offset potable water demand. Treated wastewater is widely used for applications such as irrigation, cooling towers, and agriculture. However, recent conservation efforts during the drought have resulted in reduced WWTP flows thereby, in some locations, reducing current and projected recycled water availability.

Available capacity in the wastewater (sewage) collection and treatment system provides an opportunity to divert stormwater to augment wastewater flows and generate additional recycled water supply at the Water Reclamation Plants (WRPs), thereby providing a multitude of benefits such as improved water quality, increased water supply, and enhanced flood management to the region and the watersheds.

The purpose of this White Paper is to explore the available capacity of the wastewater (sewage) treatment plants for treating additional urban runoff/stormwater (dry-weather flows and initial stormwater runoff containing highest concentration of pollutants) and generating a new source for recycled water. This White Paper provides a high-level analysis to understand the possibilities of controlled connection of the stormwater collection system to the sewage collection system or directly to the WWTP at strategic locations. In either situation, the diversion controlled by the wastewater agency as their system capacity allows would ultimately result in cost effective assistance in achieving MS4 compliance and the generation of additional water for recycled water use. Figure 1-1 depicts a conceptualization of this approach.

BI0423181614LAC Page 18 of 7:0

Figure 1-1. Conceptualization of Connecting Stormwater Infrastructure to Wastewater Treatment Plant

Permissive integration is system integration through careful consideration of all pertinent agencies that own, operate, and maintain infrastructure to ensure system reliability and compliance. Permissive stormwater connection to the wastewater collection system for treatment and reuse presents multiple benefits including:

- Increase in local water supply through capture and use of stormwater that would otherwise is wasted to the ocean
- Generate continuous low-cost water supply source, which is available during dry-weather as well
- Improve water quality of the receiving waters thereby helping MS4 permittee agencies achieve regulatory compliance
- Capture urban runoff/stormwater which can be treated and used for recharge of aquifers and for other beneficial uses, such as irrigation
- Maximize the use of existing stormwater and sewage collection systems, treatment, and reclamation plant infrastructure to generate recycled water supplies
- Expand water reuse which provides a reliable, local water supply that reduces vulnerability to droughts and other water supply constraints

The study approach included the following steps:

- Review of stormwater capture and recycled water studies within Los Angeles County
- Gather and synthesize data of flows and capacities of the WWTPs to understand the available capacity of the wastewater treatment system
- Evaluate the effect of conservation in the post-drought period to understand additional capacities in the treatment systems. Specifically, pre- and post-drought flow comparisons were made.
- Map existing infrastructure such as, WWTP/WRP facilities, wastewater collection and storm drain systems, low flow diversions (LFDs), and recharge prone areas to geographically show the proximity of conveyance and treatment systems
- Understand pathways, benefits, and challenges for connecting storm drain system to sanitary/ collection system or directly to the WWTP

This white paper is organized as Sections 1 through 7 to cover these steps and draw conclusions and recommendations of this study.

1-2 Page of 20 10 11 12

Inventory of Current Studies

Stormwater capture and recycled water projects are commonly identified as local water supplies with the greatest potential impact to offset imported water within Los Angeles County. A number of studies have been conducted to evaluate water supplies and stormwater management throughout the region. The following section provides a summary of relevant studies relating to stormwater capture and recycled water within Los Angeles County within the last 10 years.

2.1 Los Angeles County

2.1.1 Los Angeles County Department of Public Works 2018 Water Resilience Plan

In Spring 2016, the Los Angeles County Board of Supervisors directed the Department of Public Works (LACDPW) to develop a Water Resilience Plan. The plan, which is currently being developed, identifies integrated strategies to capture more water locally, better manage our existing supplies, protect our beaches and oceans from contamination, green neighborhoods and parks, increase public access to rivers, lakes and streams, and improve coordination among relevant government agencies. Four key strategies are identified as essential to establishing and maintaining water resilience across the region:

- 1. Maximizing the capacity of collaborative water groups (e.g. IRWM, EWMP) to articulate regional strategies and implement relevant projects that contribute to supply and quality.
- 2. Pursuing a diverse portfolio of regional and local water management projects (e.g. stormwater capture, recycled water distribution) that contribute to meeting changing needs (e.g. climate change, increasing demand).
- 3. Promoting multi-benefit strategies that encourage collaboration and support cost-effectiveness.
- 4. Engaging a variety of stakeholders to build consensus around the most promising local strategies and mobilizing resources.

The study identified that the capture and use of stormwater runoff (runoff from urban areas that has not yet reached streams and rivers) is a source of supply that is currently underutilized in most areas of the County. Projects and programs that capture stormwater are particularly valuable for building water resilience in the County because they can provide a suite of benefits beyond additional water supply. Local stormwater capture decreases dependence on imported water sources, helps improve water quality in receiving water bodies to meet water quality mandates, provides some flood protection, reduces peak flows that impact the region's waterways, and often involves development of new greenspace for habitat restoration and community recreation. Through these benefits, effective stormwater management contributes to developing a more resilient watershed that can more successfully withstand the threat of climate change and increased needs presented by a growing population. However, there has been little concerted effort to implement a substantial increase in stormwater capture for the benefit of regional water supplies. (LACDPW 2017)

2.1.2 Bureau of Reclamation 2016 Los Angeles Basin Conservation Study

The Los Angeles Basin Conservation Study was prepared through a partnership between the Los Angeles County Flood Control District (LACFCD) and the U.S. Bureau of Reclamation (USBR). The purpose of the study was to examine the region's water supply and demand, investigate potential impacts from

BI0423181614LAC 2-1

projected population growth and climate change, and develop concepts for stormwater capture to enhance local supplies and help the region adapt to its growing water needs.

The study estimated that in the future there will be a total available supply of approximately 630,400 AFY of stormwater. Currently, the LACFCD captures and recharges approximately 200,000 AFY of stormwater in an average year. Therefore, the study includes a strong emphasis on stormwater capture for groundwater recharge and, to explore options that could expand the use of this resource, structural and nonstructural concepts were developed to enhance effective stormwater management under the projected future conditions. Projects in the Local, Regional, Storage, and Management Solutions have the ability to greatly enhance stormwater capture opportunities and enhance the region's overall water supply.

Capital and operations and maintenance (O&M) cost estimates were developed for each project group, and the costs were annualized over a 50-year period. Of the Regional Solutions, Regional Stormwater Capture is the least costly, and second least costly overall. Regional Stormwater Capture provides approximately 26,100 to 59,900 AFY of stormwater conservation, with a cost of \$900 to \$2,100 per AFY. The remaining project groups have considerably higher cost estimates. By comparison, Local Stormwater Capture ranges between \$8,800 to \$14,400 per AF. (USBR 2016)

2.1.3 Greater Los Angeles County 2013 Integrated Regional Water Management Plan

The purpose of the 2013 Integrated Regional Water Management Plan is to define a clear vision and direction for the sustainable management of water resources in the Greater Los Angeles County (GLAC) Region for the next 20 years, and to present the basic information regarding possible solutions and the costs and benefits of those solutions.

The plan identifies opportunities for expansion of stormwater capture and management including development of local and regional facilities to capture and treat urban runoff and stormwater as part of a TMDL compliance strategy. Treated stormwater could either be recharged to groundwater, or stored for delivery to local uses, such as landscape irrigation. Increasing local supplies (like stormwater and recycled water) made available for recharging groundwater basins is also a critical element of further implementation of the conjunctive use strategy. (GLAC 2014)

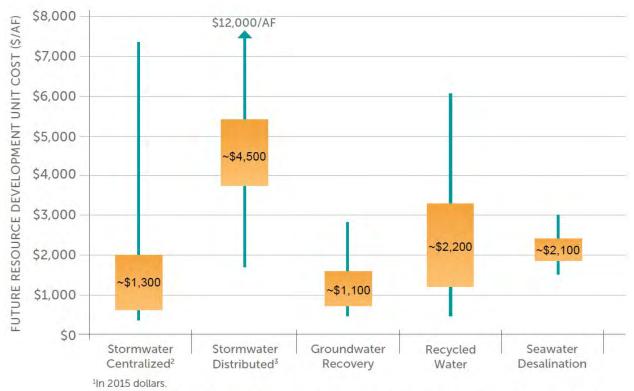
The IRWM Plan has a number of goals relating to stormwater capture and reuse including:

- Increase indirect potable reuse by 80,000 AFY and increase non-potable reuse of recycled water by 83,000 AFY
- Increase capture and use of stormwater runoff by 26,000 AFY that is currently lost to the ocean
- Develop 54,000 AF of new stormwater capture capacity

2.2 Regional

2.2.1 MWD Integrated Water Resource Plan 2015 Update

The Metropolitan Water District of Southern California (MWD) 2015 Integrated Water Resources Plan (IRP) Update builds upon the foundation of diversification and adaptation in previous IRPs to develop a long-term strategy to secure the region's water supply.


In this refinement, the 2015 IRP Update projects a need for more than 723,000 acre-feet of growth in imported and local supplies and reduced water demands from conservation. Local supplies are a key to providing and maintaining water supply reliability into the future since over half of the region's water supplies come from locally developed sources. The plan identifies that approximately 200,000 acre-feet

2-2 BI0423181614LAC

of new local supply and water conservation is needed, in conjunction with stabilizing, protecting and restoring the region's imported supplies.

The approach for local supplies is to develop 20,000 acre-feet of additional water supply through recycling, groundwater recovery and seawater desalination. The goal is also to maintain the base of existing supplies. The additional 20,000 acre-feet of new local supply combined with existing and underconstruction local supplies equal a total local supply target of 2.4 million acre-feet by 2040. This level of development represents a total increase of 227,000 acre-feet from 2016 to 2040.

The plan estimates unit costs for the development of future, local supply projects. Costs are shown for stormwater centralized and decentralized capture and recharge, groundwater recovery, recycled water, and seawater desalination as shown in Figure 2-1. While regional stormwater capture projects have the widest range of costs, they are often the most cost-efficient, whereas decentralized stormwater capture is shown to be the most expensive for developing local supplies. (MWD 2016)

²Stormwater Centralized: large-scale recharge projects that collect stormwater runoff from multiple parcels. ³Stormwater Distributed: smaller-scale projects and not centralized.

Figure 2-1. Summary of Future Resource Development Unit Costs¹
Source: MWD 2016, Edited by CH2M

2.2.2 WRD 2012 Stormwater Recharge Feasibility and Pilot Project Development Study

From 2000 to the present, the Water Replenishment District of Southern California (WRD) has participated in the Los Angeles Basin Water Augmentation Study, led by the Council for Watershed Health. The purpose of the augmentation and feasibility study is to explore the potential for reducing surface water pollution and increasing local water supplies by increasing infiltration of urban stormwater runoff.

BI0423181614LAC 2-3

The study found approximately 10 percent of the 270,000 acres within the WRD service area provided opportunities for local and regional stormwater recharge where nearly 17,000 acre-feet per year of potential water supply benefits can be expected. Of those, nearly 8,000 acres were identified as high-priority areas that could contribute more than 4,000 acre-feet per year to the local potable aquifers. In addition, the study identified that each acre of land in south Los Angeles County that receives well-sited retrofits could annually yield approximately 0.54 acre-feet of groundwater recharge and more than 200 pounds of pollutant reduction. (WRD 2012)

2.3 City of Los Angeles

2.3.1 2018 One Water LA 2040 Plan (Draft)

The purpose of the One Water LA Plan is to increase sustainable water management for the City of Los Angeles. The plan provides a comprehensive strategy for managing water in a more integrated, collaborative, and sustainable way through new project, program, and policy opportunities.

The plan developed 27 concept options including a mix of projects and programs that maximize recycled water use, enhance stormwater capture, contribute to supply sustainability, and provide multiple water quality benefits. A preferred portfolio of concepts was selected and includes dry-weather LFDs, Los Angeles River recharge into the Los Angles Forebay using injection wells, and potable reuse through groundwater, raw water, and treated water augmentation. These projects have an estimated new yield of 147,200 AFY.

The dry-weather LFD concept involves collecting low flows from the stormwater system and transferring them to the wastewater system for treatment. Under normal year conditions, the estimated yield from city-wide implementation is 6,200 AFY, while the yield-weighted unit cost is roughly \$1,000 per AF (LASAN 2018). Key benefits of this concept include:

- Minimizes or eliminates the discharge of potentially polluted dry-weather runoff from receiving waters
- Diverts dry-weather runoff in the stormwater collection system to the wastewater collection system to be conveyed to a WRP for treatment and reuse
- Improve health of local watersheds
- Improve local water supply reliability
- Integrate management of water resources and policies
- Balance environmental, economic, and societal goals

2.3.2 City of Los Angeles 2015 Sustainable City pLAn

The Sustainable City pLAn (pLAn) is a roadmap for Los Angeles to become environmentally healthy, economically prosperous, and equitable in opportunity over the next 20 years (City of Los Angeles, 2015). The pLAn focuses on both short-term results and long-term goals including:

- Reduce per capita potable water use by 20 percent by 2017, 22.5 percent by 2025, and 25 percent by 2035
- Reduce purchase of imported water by 50 percent by 2025 and source 50 percent of water locally by 2035, including 150,000 AFY of stormwater capture
- Improve water quality grade-point average
- Reduce sewer spills to 100 times per year by 2025 and 67 times per year by 2035 (175 sewer spills occurred between July 2013 and June 2014)

2-4 BI0423181614LAC

2.3.3 LADWP 2015 Stormwater Capture Master Plan

The Stormwater Capture Master Plan (SCMP) is the latest major component of Los Angeles Department of Water and Power (LADWP) initiative to increase the local water supply and reduce the dependence on expensive imported water for the City of Los Angeles. The goal of the SCMP is to quantify stormwater capture potential and identify new projects, programs, and policies to significantly increase stormwater capture for water supply within the 20-year planning period.

Local stormwater has historically contributed a significant amount of water for the City. LADWP and its partners actively recharge the local groundwater aquifers, primarily within the San Fernando Valley Basin, with approximately 29,000 acre-feet per year, and another 35,000 acre-feet per year is recharged into those same aquifers by incidental infiltration through mountain front zones and unpaved surfaces.

The results of the plan show that through the sustained implementation of a suite of centralized projects and the adoption of distributed programmatic approaches, an additional 68,000 to 114,000 acre-feet per year of stormwater for water supply could be realized in the next 20 years. The approximate value of this water to LADWP over the same 20-year time period is \$1,100 per acre-foot for recharged water and \$1,550 per acre-foot for directly used water, which represents a sound investment in the City's future water supply portfolio. (LADWP 2015)

2.3.4 LADWP 2012 Recycled Water Master Planning Documents

The LADWP Recycled Water Master Planning (RWMP) documents presents the City of Los Angeles' recycled water planning through 2035, as well as long-term recycled water planning for up to 50 years beyond the 2035 horizon. The RWMP documents include an evaluation of recycling alternatives that integrate two strategies to increase recycling: groundwater replenishment and non-potable reuse.

LADWP's 2010 Urban Water Management Plan established a goal of increasing recycled water use citywide to 59,000 AFY by 2035. The RWMP finds the preferred way to achieve this goal is through 30,000 AFY of groundwater replenishment and 9,650 AFY of non-potable reuse (in addition to the 19,350 AFY of existing and planned non-potable reuse).

Existing, planned, and future non-potable water reuse demand is expected to be 29,000 AFY by 2035. The plan identified there is uncertainty as to whether all the potential recycled water demands would be realized in the future. Connection to the recycled water system is voluntary and requires customer participation for successful implementation. It is anticipated that not all customers will connect due to site constraints, cost limitations, or other unknown factors that cannot be predicted. (LADWP 2012)

Inventory of Sanitary Flows and Downstream Recycled Uses

There are over 21,000 miles of sanitary sewer within Los Angeles County and 21 WWTPs. Wastewater collection and treatment agencies in the county include the Sanitation Districts of Los Angeles County (LACSD), the Consolidated Sewer Maintenance District of Los Angeles County (CSMD), the City of Los Angeles Bureau of Sanitation (LASAN), the City of Burbank, and Las Virgenes Municipal Water District (LVMWD).

Of the WWTPs, 17 are currently WRPs used to treat sewer flows for reuse as recycled water. A majority of recycled water is used for non-potable reuse, such as urban landscape and agricultural irrigation, industrial processing needs, and environmental applications, as well as indirect potable reuse through groundwater recharge at spreading basins or for maintenance of seawater barriers in groundwater basins along the coast. The remainder is currently discharged to creeks and rivers that can support riparian habitat in some river or channel sections, or flows directly to the ocean (LACDPW 2017).

The following section provides an overview of existing infrastructure for each of the wastewater treatment agencies within Los Angeles County and the subsequent recycled water uses. Table 3-1 shows the design capacities, influent flows, and recycled flows to identify potential available capacities within the system. A map of the wastewater conveyance system and treatment facilities is shown in Exhibit 1 in Appendix A.

Existing Wastewater Collection and Treatment 3.1 Infrastructure

3.1.1 Sanitation Districts of Los Angeles County

The LACSD service area covers approximately 824 square miles and encompasses 78 cities and unincorporated territory within the County. Within the Sanitation Districts' service area, there are approximately 9,500 miles of sewers that are owned and operated by the cities and County that are tributary to the Sanitation Districts' wastewater collection system. The Sanitation Districts own, operate, and maintain approximately 1,400 miles of sewers, ranging from 8 to 144 inches in diameter, that convey approximately 500 million gallons per day (mgd) of wastewater to 11 wastewater treatment plants. Included in the Sanitation Districts' wastewater collection system are 48 active pumping plants located throughout the county (LACSD 2018).

LACSD operates the following wastewater treatment facilities:

- Joint Water Pollution Control Plant (JWPCP)
- La Cañada WRP
- Lancaster WRP
- Long Beach WRP
- Los Coyotes WRP
- Palmdale WRP
- Pomona WRP
- San Jose Creek WRP
- Saugus WRP
- Valencia WRP

BI0423181614LAC Page 26 of 70

Whittier Narrows WRP

LACSD is in the process of implementing the Clearwater Project in concert with the operation of the JWPCP. The JWPCP is the largest wastewater treatment facility in the LACSD system and uses two large tunnels to convey treated water to an ocean outfall network beginning at Royal Palms Beach at the terminus of Western Avenue. The outfalls diffuse the treated water approximately 1 1/2 miles offshore at a depth of 200 ft. The tunnels are 60 and 80 years old and because of capacity limitations have not been inspected since 1958. This aging infrastructure must be inspected and refurbished as found necessary. To accomplish this and achieve additional wet weather capacity LACSD will construct new tunnel 7 miles in length and 18 ft in diameter with a route essentially parallel to the existing tunnels and joining them at a common manifold structure connected to the outfalls. The capacity of the existing tunnels was almost exceeded twice during major rainstorms, including the rainstorm in January 2017. If the in place tunnel capacity is exceeded, partially treated or untreated wastewater would be discharged to surrounding waterways, resulting in degradation of water quality. In addition to vitally needed protection for water quality and safety of the JWPCP, the added 3rd tunnel could provide capacity for stormwater introduced into the LACSD collection network under controlled conditions, as advocated in this report. The Clearwater Project is an integral part of any strategy aimed at achieving a diversified wet infrastructure to increase water supply and MS4 compliance in a cost effective and environmentally sound manner.

3.1.2 Consolidated Sewer Maintenance District of Los Angeles County

The CSMD is administered by the LACDPW. The CSMD system serves greater than one-half of a million parcels and a population of over 2 million people within the unincorporated areas of the county (excluding Marina del Rey), 37 cities, and 2 contract cities. The District's system includes over 4,600 miles of sanitary sewers, 155 pump stations, and 4 wastewater treatment plants (LACDPW 2018). A majority of the CSMD sewer collection system is tributary to and processed by the LACSD system.

Flows treated at Malibu Mesa WRP are primarily used for irrigation at Pepperdine University. All other CSMD facilities dispose of treated wastewater onsite.

CSMD operates the following wastewater treatment facilities:

- Lake Hughes Community Water Treatment Facility
- Malibu Mesa WRP
- Malibu Water Pollution Control Plant
- Trancas Water Pollution Control Plant

Flows treated at Malibu Mesa WRP are primarily used for irrigation at Pepperdine University. All other CSMD facilities dispose of treated wastewater onsite.

3.1.3 City of Los Angeles Bureau of Sanitation

The LASAN is responsible for over 6,700 miles of sewer lines and 49 pumping plants in addition to four WRPs across the City, which have a combined capacity to treat 580 mgd of wastewater (LASAN 2018).

LASAN operates the following wastewater treatment facilities:

- Donald C. Tillman WRP
- Hyperion WRP
- Los Angeles-Glendale WRP (co-owned by the City of Glendale)
- Terminal Island WRP

The Tillman WRP and Los Angeles-Glendale WRP treat wastewater to tertiary standards for non-potable reuse in the City of Los Angeles and City of Glendale. A portion of the treated wastewater from these plants is discharged to the Los Angeles River for environmental purposes. Recycled water from the

3-2 BI0423181614LAC

Terminal Island WRP is supplied to WRD for the Dominguez Gap Seawater Intrusion Barrier and to LADWP for landscape irrigation at the Harbor Generating Station. The remaining Terminal Island WRP treated effluent is discharged to the Los Angeles Harbor. The Hyperion WRP is the oldest and largest wastewater treatment plant in the City of Los Angeles. Wastewater at the plant receives secondary treatment. The majority of secondary treated effluent from the Hyperion WRP is discharged via a 5-mile pipeline to the Santa Monica Bay with approximately 45 mgd being reused at the plant or sold to West Basin Municipal Water District (WBMWD) for further treatment at the Edward C. Little Water Recycling Facility (LACDPW 2017).

BI0423181614LAC 3-3

Dogg 29 of 70

Table 3-1. Municipal Wastewater Treatment and Reuse Flows within Los Angeles County

Table 3-1. Municipal Wastewate Facility	Rated Capacity (AFY)	2010 Pre-Drought Influent Flow (AFY)	2017 Post-Drought Influent Flow (AFY)	% Change in Influent Flow	Current Reused Flows (AFY)	Recycled Water Uses *Data Pending*
Sanitation Districts of Los Angeles		. ,	· ,		. ,	
JWPCP	448,058	313,349	287,631	-8%	-	Existing: None Future: 168,022 AFY Regional Reuse Program with MWD
La Cañada WRP	224	111	90	-19%	78	Existing: La Canada-Flintridge Country Club
Lancaster WRP	20,163	15,346	14,394	-6%	11,906	Existing: Piute Pond, Apollo Lakes Park, Eastern Agricultural Site, City of Lancaster
Long Beach WRP	28,004	21,305	12,176	-43%	7,005	Existing: City of Long Beach, WRD Alamitos Barrier
Los Coyotes WRP	42,005	24,251	23,512	-3%	6,178	Existing: City of Cerritos, Bellflower, Lakewood Cypress and La Palma, Central Basin MWD
Palmdale WRP	13,442	10,675	9,096	-15%	7,913	Existing: Farming Operations, City of Palmdale
Pomona WRP	16,802	10,025	7,079	-29%	6,331	Existing: Pomona Water Department, Spadra Site: Walnut Valley Water District, Water Replenishment District
San Jose Creek WRP	112,014	86,072	72,496	-16%	53,537	Existing: Water Replenishment District, Miscellaneous Direct Reuse, Puente Hills/Rose Hills, Central Basin MWD, Upper San Gabriel Valley MWD, Rowland Water District
Saugus WRP	7,281	5,623	5,713	2%	-	Existing: None
Valencia WRP	24,195	16,993	15,088	-11%	461	Existing: Castaic Lake Water Agency
Whittier Narrows WRP	16,802	7,942	8,087	2%	7,289	Existing: Water Replenishment District, Upper San Gabriel Valley MWD
Los Angeles County Department o	f Public Works					
Lake Hughes Community WTF	104	*Data Pending*	29	*Data Pending*	0	Existing: None
Malibu Mesa WRP	224	*Data Pending*	*Data Pending*	*Data Pending*	*Data Pending*	Existing: Irrigation of Pepperdine University
Malibu WPCP	57	*Data Pending*	37	*Data Pending*	0	Existing: None
Trancas WPCP	84	*Data Pending*	46	*Data Pending*	0	Existing: None
City of Los Angeles Bureau of Sani	tation					
Donald C. Tillman WRP	89,612	52,344	54,831	5%	34,736	Existing: Beneficial Use Future: 54 AFY Sepulveda Basin (2018), 3,500 AFY Groundwater Replenishment Project – Phase 1 (2019)
Hyperion WRP	504,065	334,699	295,270	-12%	72,216	Existing: purchased by WBMWD for treatment, City of LA's Title 22 customers Future: 1,000 AFY LAX Expansion (Pershing) WRP (2018), 1,680 AFY Advanced Water Purification Facility (Conceptual, timing TBD), 78,000 AFY MBR full scale treatment facility (Conceptual, timing TBD)
LA-Glendale WRP	22,403	22,829	18,303	-20%	12,098	Existing: Beneficial use and irrigation Future: 1,460 AFY Downtown WRP (2022), 316 AFY LA Glendale Recycled Water Storage Project (Conceptual, 2025)
Terminal Island WRP	33,604	18,460	16,208	-12%	2,307	Existing: Dominguez Gap Seawater Intrusion Barrier, Future: 7,400 AFY Harbor Area Customers Expansion & Potable Back-up (2020), 6,600 AFY Pipeline Extension on Gaffey and Phillips 66 On-Site Retrofit (2023), 3,600 AFY Harbor Connection to JWPCP (Conceptual) and/or Connection to Carson Regional Water Recycling Facility (Conceptual, timing TBD)
City of Burbank						
Burbank WRP	12,322	9,147	7,744	-15%	3,005	Existing: Burbank Water and Power Steam Plant, Debell Golf Course, City of Burbank Landfill, Other Future:
Las Virgenes Municipal Water Dis	trict					
Tapia WRP	13,442	9,391	7,546	-20%	5,938	Existing: Irrigation Future: 5,151 AFY Pure Water Project
Total	1,404,906	958,562	855,375	-11%	230,997	

WBMWD's Edward C. Little Water Recycling Facility accepts secondary effluent from the Hyperion WRP and treats it to recycled water standards. The facility produces five different qualities of "designer" or custom-made recycled water that meet the unique needs of the District's municipal, commercial and industrial customers, including irrigation, cooling tower water, seawater barrier and groundwater replenishment, and low- and high-pressure boiler feed water (LACDPW 2017).

3.1.4 City of Burbank

3-6

Wastewater generated within the City is collected and conveyed by approximately 230 miles of pipelines ranging in diameter from 6 inches to 30 inches, 2 pump stations, and 19 diversion manholes. The City of Los Angeles' 48-inch North Outfall Sewer line runs from west to east through the southern portion of the City. Wastewater is treated by the Burbank WRP which produces a disinfected tertiary effluent. The recycled water from the Burbank WRP is used for power production, landscape irrigation, and evaporative cooling (Burbank Water and Power 2016).

3.1.5 Las Virgenes Municipal Water District

LVMWD, together with its partner agency Triunfo Sanitation District, provides wastewater (sewage) services to residents in the western portion of Los Angeles County and eastern portion of Ventura County through the Las Virgenes-Triunfo Joint Powers Authority. LVMWD's service area consists of 122 square miles including Agoura Hills, Calabasas, Hidden Hills, Westlake Village and neighboring unincorporated Los Angeles County. The LVMWD wastewater collection system includes 56 miles of trunk sewer lines, from 8 inches to 48 inches in diameter, and 2 lift stations that pump wastewater over the mountains to the treatment facility. The Tapia WRP, jointly owned by LVMWD and Triunfo Sanitation District, provides wastewater treatment for the region. This facility produces tertiary-treated recycled water that is used to irrigate golf courses, parks, school grounds, highway landscapes and the common areas of some housing developments. (LVMWD 2018)

Inventory of Storm Drain Systems

The Los Angeles County regional flood control system includes catch basins, storm drains, channels, rivers, spreading grounds, and flood control basins. The following sections provides information on the existing storm drain infrastructure and diversions. A map of existing large-diameter gravity mains and existing diversions is shown in Exhibit 2 in Appendix A.

4.1 Regulatory Background

Water quality in the majority of the County of Los Angeles is directly regulated and enforced by the Los Angeles Regional Water Quality Control Board, which regulates discharges from medium and large, municipal separate storm sewer systems (MS4s) through the Los Angeles County MS4 Permit issued under the NPDES Program. The Antelope Valley, while within the County of Los Angeles, is regulated by the Lahontan Regional Board and falls outside the jurisdiction of the Los Angeles County MS4 Permit and its requirements. (LACDPW 2017)

The most recent Los Angeles County MS4 permit was issued in 2012 and lists the unincorporated County, LACFCD, and 84 municipalities within the County as responsible permittees. At the central core of the current permit for the Los Angeles Region is the requirement to meet the targets and schedules for 33 total maximum daily loads (TMDLs) incorporated into the permit. The permit also established three compliance pathways: 1) meeting numerical targets in permittee receiving waters; 2) developing and implementing a Watershed Management Program; or 3) developing and implementing an Enhanced Watershed Management Program. In all three cases, a Coordinated Integrated Monitoring Program is also required to establish a baseline and document any changes over time. (LACDPW 2017)

4.2 Existing Storm Drain Infrastructure

The storm drain system within Los Angeles County is primarily owned and maintained by the LACFCD and local cities. The California Department of Transportation (Caltrans) and Los Angeles County Metropolitan Transportation Authority (Metro) also own and maintain the storm drain infrastructure within their respective jurisdictions.

The LACFCD encompasses more than 2,700 square miles and approximately 2.1 million land parcels within 6 major watersheds. It includes drainage infrastructure within 86 incorporated cities as well as the unincorporated county areas. This includes 14 major dams and reservoirs, 483 miles of open channel, 27 spreading grounds, 3,330 miles of underground storm drains, 47 pump plants, 172 debris basins, 27 sediment placement sites, 3 seawater intrusion barriers and an estimated 82,000 catch basins. (LACDPW 2017)

The gravity mains within the LACFCD storm drain system range from 6-inch diameter pipes to boxes greater than 12 feet and are typically reinforced concrete pipe or box. Other pipe materials also include steel, cast/ductile iron, corrugated metal, unreinforced concrete, asbestos cement, brick, cured-in-place pipe liner, high density polyethylene, and plastic.

4.3 Existing Diversions

Dry-weather urban runoff is non-stormwater flow generated in urban areas due to overirrigation, broken sprinkler systems, fire hydrant testing, car washing, and other sources. Since urban runoff carries pollutants that are typically present on landscape and streetscape such as trash, metals, dissolved nutrients, and bacteria, it is considered a source of pollution.

BI0423181614LAC 4-1

Through Senate Bill (SB) 485, County Sanitation Districts have the authority to collect and treat urban runoff as wastewater. Further, they have accepted the introduction of urban runoff for treatment on a limited basis within their treatment facilities. A LFD is a structural system that diverts this polluted water away from the storm drains into the sanitary sewer or another treatment system to eliminate the discharge of potentially polluted dry-weather runoff into receiving waters. In addition to dry-weather flow, where possible LFDs are sized to capture the first 0.1 inch of rainfall. Additional stormwater could be captured for water quality or water supply benefits by providing storage upstream of the diversion and metering the stored flows into the sewer after wet-weather peaks in the sewer have subsided. By using an integrated control system, the storage can be located in areas where land is available and/or less expensive and release can be timed with the operation of the diversion.

LACFCD, LASAN, and the cities of Santa Monica, Long Beach, Redondo Beach, and Manhattan Beach have taken proactive steps to improve stormwater quality and watershed health by incorporating these devices. In total, there are 54 LFDs located in Los Angeles County as listed in Table 4-1 and are shown in Exhibits 2 through 8 in Appendix A. The City of Long Beach is currently working to bring three new diversions online. Most LFDs are located along the coastline to capture flows before discharge to the ocean. LFDs are used for water quality benefit and are typically not considered a source of water.

Table 4-1. Existing LFDs within Los Angeles County

Facility Name	Capacity (gpm)	Facility Name	Capacity (gpm)
LACFCD		LASAN	
Alamitos Bay	120	8th/Enterprise	700
Arena Pump Plant	60	Bay Club Drive	340
Ashland Avenue	30	Downtown	Gravity
Avenue I	60	Echo Park	450
Boone Olive Pump Plant	96	Garvanza	190
El Segundo Pump Plant	60	Imperial Hwy	644
Electric Avenue Pump Plant	76	Kinney Circle (LFD)	500
Hermosa Strand Infiltration Trench	250	LA Zoo	12,000
Herondo Street	60,120	Mar Vista	4,800
Manhattan Beach Pump Plant	50	Marquez Canyon	300
Manhattan, 28th & The Strand	130	Palisades Park	1,480
Marie Canyon	100	Penmar	2,700
Marina Del Rey (Oxford Basin)	200	Santa Monica (New)	10,000
Parker Mesa/Castlerock	75	Santa Monica Canyon	3,500
Pershing Drive, Line C	240	South LA Wetlands	6,700
Playa del Rey	180	Sun Valley Park	80
Pulga Canyon	260	Temescal	3,500
Rose Avenue	100	Temescal Canyon	3,500
Santa Ynez	826	Thornton	1,500
Washington Blvd	63.9	Tuxford (LFD)	180
Westchester	125	Westminster Dog Park	Gravity

Table 4-1. Existing LFDs within Los Angeles County

Facility Name	Capacity (gpm)	Facility Name	Capacity (gpm)
		Westside Park	60
City of Santa Monica		City of Long Beach	
Montana Avenue	n/a	Appian Way	30
Pico-Kenter (diverts to SMURRF)	n/a	Belmont Pump Plant	60
Santa Monica Pier	n/a	Colorado Lagoon	60
Wilshire Boulevard	n/a	Termino Avenue Drain	n/a
City of Redondo Be	ach	City of Manhatt	an Beach
Redondo Beach Pier	n/a	Manhattan Beach Pier	50
Sapphire	n/a		

Source: LACDPW 2014, LASAN 2017

Results and Findings

5.1 Infrastructure Mapping

Existing infrastructure was mapped to geographically show the proximity of conveyance and treatment systems within Los Angeles County. Maps of these systems are shown in Exhibits 1 through 8 in Appendix A. The following section provides source information and discussion of the maps.

Wastewater Treatment Facilities. WWTP locations were obtained from LACSD, LACDPW, LASAN, City of Burbank, and LVMWD. A number of facilities are located along the coast and most facilities are located in the southern half of the county.

Wastewater Collection System. The wastewater collection system map data was collected from LACSD, LACDPW, LASAN, and LVMWD. Due to the size of the collection system and high-level scale of the map and study, only the interceptor and outfall sewers are shown for LACSD and LASAN which range from 18 inches to 12.5 feet in diameter. The LACDPW sewer system is much smaller by comparison and was not mapped. For clarity, small diameter pipes are screened from the figures.

Storm Drain System. The existing storm drain system was obtained from LACFCD and includes both county and city drainage facilities. The conveyance system includes gravity mains, force mains, culverts, catch basins, lateral connections, maintenance holes, pump stations, channels, and natural drainage. Due to hydraulics, a potential storm drain diversion is most suitable for a gravity line therefore only gravity lines are displayed. Due to potential minimum flow requirements in some surface waters, diversion of open channel flows and rivers were not considered for this analysis. For clarity, small diameter pipes are screened from the figures.

Low Flow Diversions. LFD locations were obtained from LACFCD and LASAN. Most LFDs are located along the coast as downstream efforts to capture and treat flows prior to ocean discharge. However, LASAN has installed several LFDs inland to help capture flows from some of the priority, poor quality sub-watershed discharges.

Unconfined Aquifer. The unconfined aquifer data was developed as part of the Los Angeles Basin Conservation Study. The data shows that only 28-percent of the Los Angeles Basin is underlain by an unconfined aquifer. Any water that is infiltrated outside of the unconfined aquifer does not contribute to water supply. Unfortunately, most of this area is urban and highly impervious, further limiting the potential of locally infiltrating stormwater.

Los Angeles Basin. The Los Angeles Basin area was obtained from the Los Angeles Basin Conservation Study and includes the Los Angeles River, San Gabriel River, Ballona Creek, South Santa Monica Bay, North Santa Monica Bay, Malibu Creek, and Dominguez Channel/Los Angeles Harbor watersheds. Nearly 95-percent of the Los Angeles County's population resides within this area (USBR 2016).

Los Angeles County and local municipalities own an extensive network of wastewater and stormwater collection systems. Within the county, there are approximately 21,000 miles of sewers and 3,300 miles of storm drains owned by LACFCD with thousands of miles of additional city-owned sewer and drainage systems. The mapping of the sewer and storm drain systems indicate numerous potential points at which flow in the storm drain could be diverted to the sewer in a controlled fashion as capacity is available.

BI0423181614LAC 5-1

5.2 Effects of Conservation on Sewer Flows

California's current drought began in 2012 and the continuing absence of rain lead to a state of emergency declared in January 2014. Indoor conservation during the drought has led to reduced flows to wastewater systems which has been observed at most of the WWTPs. To understand the influence of the drought on sewer flows, influent flows were collected for the year 2010 to represent the sewer flows before the impacts of the drought and conservation efforts. Post-drought data were collected for the year 2017 to represent the current sewage flows after conservation was in effect. Although seasonal and year-to-year conditions may vary, these are considered representative years suitable for a high-level analysis.

As shown in Table 3-1, the cumulative sewer flow reduction between 2010 and 2017 is approximately 103,000 AFY, a drop of 11 percent throughout the county, as shown in Figure 5-1. Some facilities have seen reductions well above 20 percent indicating available capacity in both the sewage collection system and connected treatment facilities. This analysis does not account for population growth during the same period (2010-2017). Available capacity may be limited to dry weather, since many of the WWTPs/WRPs/sewage collection systems continue to operate at capacity during and immediately following wet-weather. This indicates that while capacity is available, storage may be necessary. The potential available capacity, if used in a controlled fashion, could be used to increase the supply of water available for recycling and assist in meeting MS4 requirements.

Conservation Practices Post-Drought Provide Additional Capacity to Use for Stormwater Treatment and Reuse

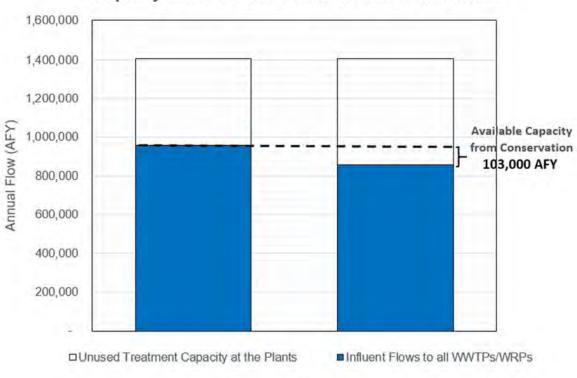


Figure 5-1. Pre- and Post-Drought Influent Sewer Flows

5.3 Recycled Water Capacity Evaluation

Within Los Angeles County, approximately 231,000 AFY of flows are reused for both potable and non-potable applications as shown in Table 3-1. A number of future water reuse projects have been

5-2 BI0423181614LAC

identified by the water reclamation and distributing agencies. Over the next 10 years, future reuse projects will more than double the reuse flows currently being delivered.

In addition to demand from future projects, recycled water flows, like other water resources, are becoming oversubscribed and may not be sufficient to meet all the recycled water projects currently being considered or planned. Regional wastewater collection systems have identified this as a challenge (LACDPW 2017). Diversions from the storm drain system can supplement sewer flows and provide an additional source of water to help meet future recycled water demand as shown in Figure 5-2. While cumulative sewer flows appear to be sufficient to meet total current and future recycled water demands, utilization of recycled water at some WRPs is currently fully subscribed with an increasing demand. Due to infrastructure limitations and supply/demand locations, not all sewer flows are used to produce recycled water.

Intercepting Stormwater for Reuse will Help Create Water Supply Resiliency

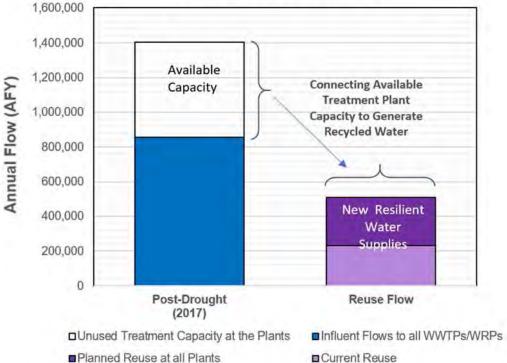


Figure 5-2. Used and Available capacities and Reuse supplies

Pathways, Benefits, and Challenges for Permissive Integration

The following section describes the benefits and challenges of implementing storm drain diversion of stormwater for the purpose of providing water quality and supply benefits.

6.1 Legislative Pathways

Regulatory pathways for stormwater diversion to the sanitary sewer have already been established through the use of LFDs and are described in the following section.

6.1.1 SB 485, Hernandez - County Sanitation District Act

SB 485, Hernandez - County Sanitation District Act was enacted in 2015 which gives LACSD the authority to assist local jurisdictions with stormwater and urban runoff projects. The County Sanitation District Act authorizes a sanitation district to acquire, construct, and complete certain works, property, or structures necessary or convenient for sewage collection, treatment, and disposal. This bill would authorize specified sanitation districts in the County of Los Angeles to acquire, construct, operate, maintain, and furnish facilities for the diversion, management, and treatment of stormwater and dry-weather runoff, the discharge of the water to the stormwater drainage system, and the beneficial use of the water. The law requires a district to consult with the Los Angeles County Flood Control District and the relevant watermaster or water replenishment district prior to initiating a stormwater or dry-weather runoff program within the boundaries of an adjudicated groundwater basin or within the service area of a water replenishment district, as applicable.

6.1.2 LACSD Dry-Weather Urban Runoff Diversion Policy

LACSD enacted new guidance in 2014 which provides procedures for diversion of dry-weather flows into the Districts' collection system. The policy requires the owner of the stormwater collection system to obtain an Industrial Wastewater Discharge Permit, install pretreatment to remove large solids, provide a means for measuring flow, provide necessary monitoring and control systems, and pay appropriate fees (LACSD 2014).

The policy also requires:

- the discharge rate will be limited to ensure the downstream sewer will not flow more than ¾ depth;
- discharge to the sewer must be pumped with a check value between the pump and connecting sewer to ensure wastewater does not backflow into the storm drain system;
- a rain collector must be installed to automatically shut off diversion upon sensing 0.1-inch of rainwater; and,
- diversions are not allowed where incompatible pollutants have been detected in quantities that may impact the downstream treatment.

Historically, diversions have been limited to dry-weather flows. Since the implementation of SB 485, LACSD has been open to accepting stormwater from controlled systems. Connection fees for diversions operated by government agencies have been waived in several districts to make projects more cost effective and LACSD is working on a project in the City of Carson to accept stormwater when capacity is available. In most areas of the County, systems that involve the acceptance of stormwater will need to incorporate storage to mitigate the risks associated with accepting flows during a storm. Storage can be located anywhere in the subwatershed and release from the storage can be timed with the operation of the downstream diversion. Operating diversions in this way is expected to lead to greater opportunities to reuse the water after treatment. Projects are being evaluated on a case-by-case basis. Page 42 of 70

6.1.3 Municipal Water District Law of 1911

Municipal water districts have the authority to acquire, control, distribute, store, spread, sink, treat, purify, recycle, recapture, and salvage any water, including sewage and storm waters. In 2017, LVMWD developed Draft *Policy Principles for Dry-Weather Urban Runoff Diversions* to help eliminate dry weather discharges with the potential benefit of additional source water for recycling and future potable reuse (LVMWD, 2018).

6.2 Benefits

6.2.1 Water Quality

In 2004 LASAN evaluated, as part of their water Integrated Resources Plan, dry-weather runoff options for the Ballona Creek, Dominguez Channel, Los Angeles River, and Santa Monica Bay watersheds. The study analyzed both source control measures and methods that address runoff that has entered the storm drain system. For runoff that already entered the storm drain, diversion to a WWTP was analyzed as an option. The study also analyzed bacteria, trash, pesticides, nutrients, selenium, and other key toxics as the main constituents of concern and potentially likely requirements for meeting the TMDLs for dry weather. Of these, bacteria was determined to be the primary constituent of concern for dry-weather urban runoff treatment. The study estimated future dry-weather treatment and discharge needs to address the Bacteria TMDL throughout the City of Los Angeles' watersheds to be about 87 million gallons per day (LACFCD 2014, LASAN 2004)

Water quality benefits from diversion of dry-weather flows vary from location to location based on the tributary areas. For existing coastal watersheds, the benefits of LFDs have been realized in the form of improved ocean water quality and fewer beach closures due to health risks associated with poor water quality (LACFCD 2014). Monitoring results of existing LFDs throughout the county indicate beneficial impacts to meeting water quality regulations.

The Westchester Storm Drain LFD project provides an example of the water quality benefits associated with this type of diversion. The storm drain connecting to the structure receives its urban runoff from West Manchester Boulevard in the community of Westchester and northern portions of Los Angeles International Airport. The hydrologic drainage area tributary to this drain is 2,416 acres. The construction of the LFD was completed in October 2004 and the facility began diverting dry-weather runoff to the LASAN sanitary sewer in May 2005. The Watershed Management Division of the Los Angeles County Department Public Works obtained weekly runoff samples upstream of diversion and tested for bacteria levels. The sampling effort continued until October 31, 2005, the end of the dry-weather season. Analysis of water samples showed elevated bacteria levels in the North Westchester storm drain. The water quality results at the shoreline were comparatively lower than the levels inside the storm drain and below the set water quality standards (LACFCD 2006), due to the effects of the LFD.

6.2.2 Water Supply

Typically, LFDs are installed for water quality benefit and are not considered a significant water source. Modeling will need to be conducted on a systematic, case-by-case basis to determine the water supply benefit of adding new diversions or increasing the capacity of existing diversions. This additional source water diverted to the WRPs can be used to produce recycled water, which has a direct benefit to water supply within the region. Recycled water is a reliable, local supply source that reduces dependence on imported water and is considered a drought-proof supply.

BI0423181614LAC

6.2.3 Infrastructure

Recent drought and conservation may have had deleterious impacts on wastewater systems. Declining indoor water usage decreases wastewater flows and may increase pollutant and solids concentrations, which could increase blockages, odors, and corrosion in pipes. This may lead to increases in O&M costs, odor complaints, and an accelerated degradation of infrastructure (CUWA 2017). Therefore, in some situations the addition of stormwater can be advantageous to the conveyance and treatment of wastewater in reducing unwanted conditions.

6.2.4 Pilot Testing for Wet Weather Diversion

As discussed in Section 4, there are a number of existing LFDs throughout Los Angeles County that divert dry-weather flows to the sanitary sewer system. Expansion of these existing diversions beyond dry-weather to include wet-weather flows can provide opportunities for stormwater treatment. This action could lead to new water supplies and possibly be a cost effective, environmentally sound component for MS4 compliance. However, it would be beneficial to pilot test both the incorporation of controlled wet-weather flows into the sewer collection system as well as directly to the influent of the WWTP. This pilot work would be at selected locations to understand the benefits and challenges. Existing LFD locations provide opportunities to pilot this concept through controlled storage and release upstream of an existing diversion. In cooperation with LACFCD, the wastewater agency should be the primary authority for the pilot work. The regulatory community must be an active participant in pilot work.

6.3 Challenges

6.3.1 Collection and Treatment System Capacity

Wet weather flows can stress the sanitary sewer collection system and generate high peak flows at WWTPs leading to the bypass of certain treatment processes resulting in regulatory violations. Therefore, existing sanitary sewer and treatment capacities must be evaluated to identify the amount of stormwater ("first flush") that could be diverted into the system without risk of overflow or exceeding the WWTP's peak flow capacity. Modeling should be conducted to determine the maximum permissive or controlled capacity that can used to size the storm drain diversions. Utilization of storage facilities can help address capacity issues during peak hours. New technologies, such as smart manhole covers, can monitor the flows throughout the system on a real-time basis to minimize overflow risk. For the alternative of controlled diversion of stormwater directly to the WWTP, the collection system challenges are essentially avoided to this case, the treatment plant operator knows the plant capacity available from currently existing plant flow meters and can adjust the amount directed from the stormwater system to safely utilize the available capacity. A pump or gravity diversion system could be utilized depending on the specific circumstances. The necessity of storage would be part of the size specific evaluation. In all cases, a control system with redundant measures must be employed.

6.3.2 Operation and Maintenance

Historically, wastewater agencies do not plan and construct these LFDs to the sanitary sewer system. Generally, they are planned, constructed, and maintained by the cities and other agencies required to meet water quality standards related to the discharge of water from storm drains. Most wastewater agencies categorize LFDs as industrial waste discharge facilities subject to connection permit fees¹ and annual surcharge fees which fund the O&M of the collection and treatment system. Where a diversion includes multiple benefits, such as water supply, additional funding partners and avenues may become available, which would assist in establishing a collaborative effort among stakeholders.

Page 44 of 70

¹ Connection fees for local governmental diversions have been waived in LACSD districts 2, 3, 8, 15, and 18. Waivers in additional LACSD districts will be proposed when projects are proposed in those districts.

Design and construction costs of LFD facilities in Los Angeles County have varied widely based on treatment capacity, site conditions, and sewer infrastructure availability. In addition, LFD facilities require substantial regular maintenance. Similar to initial costs, O&M expenses vary widely based on many factors, such as the type of LFD facility, treatment volume, weather conditions, watershed characteristics, sampling requirements, calibration, and equipment replacement.

Table 6-1 lists the capital and O&M costs associated with the LACFCD's LFD facilities, which range from 60- to 800-gallon-per-minute diversion capacities.

Table 6-1. LACFCD Approximate Capital and Operation Cost of LFDs

Item	One-Time Cost
Capital Costs	
Design, project management, environmental permitting	\$50,000 — \$500,000
Construction	\$150,000 — \$2,000,000
Sewer connection fee ¹	\$40,000 — \$1,000,000
Range of Initial Costs per LFD	\$240,000 — \$3,500,000
O&M Costs	
Maintenance (inspections, telemetry monitoring, logging, reporting, repairs, cleanouts, etc.)	\$35,000 — \$100,000
Equipment replacement (pumps, sensors, etc.)	\$5,000 — \$30,000
Annual industrial waste surcharge fee	\$5,000 — \$30,000
Sewer connection fee trigger (may apply when discharge exceeds permitted volume and/or rate) ¹	\$0 — \$100,000
Range of Annual Operation and Maintenance	\$45,000 — \$260,000

Source: LACFCD 2014

Notes:

6.3.3 Regulatory

Diversion of urban runoff/stormwater creates a regulatory benefit through the perspective of MS4 compliance and reduced storm drain discharges to surface waters. Consequently, this causes potential compliance issues for wastewater agencies due to the increased potential of sewage spills from the introduction of stormwater. Involvement and participation of the regulatory, drainage, and wastewater agencies is necessary to understanding the benefits and determining regulatory liability for diversions.

6-4 BI0423181614LAC

¹ Connection fees for local governmental diversions have been waived in LACSD districts 2, 3, 8, 15, and 18. Waivers in additional LACSD districts will be proposed when projects are proposed in those districts.

Summary and Conclusions

Stormwater management in urban areas remains a challenge that requires evaluating and applying a variety of management options such as capture, store, and treat, while generating sustainable new water supplies such as recycled water. Multiple stormwater management solutions are available when it comes to managing stormwater quality and quantity. Resource needs for capital costs (planning, design and construction), land purchase, and skilled labor for ongoing O&M can stress resource allocations for developing long-term sustainable solutions. These projects are intended to provide benefits of increasing water supply, improving water quality, and in some instances providing tangible community benefits. However, unless the projects capture and infiltrate water on-site in areas that augment groundwater or the captured stormwater is used directly on-site, then no water supply benefit is achieved. This White Paper examines a possible alternative, i.e., permissive controlled integration (interconnect) of the existing stormwater system to the wastewater collection system or directly to the WWTP (maximize use of existing infrastructure) and treat urban runoff/stormwater (improve water quality) through the Los Angeles County's 21 WWTPs which would then in turn create a potential new drought-proof water supply in the form of non-potable and potable reuse (increase water recycling). In addition, any stormwater ("first flush") introduced into the wastewater system that cannot be reused will have undergone treatment such that it will aid in MS4 compliance and protection of water quality in the receiving environment. This multifaced approach to maximum utilization of existing wet infrastructure could be cost effective and environmentally sound.

With the recent years of drought and conservation efforts, the flows in the sanitary sewer systems and WWTPs have declined. The effects of low sewer flows on the collection and treatment systems have been documented. This situation has produced seemingly available wastewater collection and treatment capacity, and offers opportunities to introduce stormwater into the wastewater collection system at strategic locations under controlled conditions, that may involve storage of collected stormwater prior to diversion. The added potential water supply would provide water quality and water supply benefits to the region and watershed.

Mapping of the existing wastewater and storm drain infrastructure indicate that a number of potential connection points exist where a stormwater diversion project may be implemented. Further evaluation to understand the hydraulic impacts on the wastewater system needs to be conducted. Permissive integration is system integration through careful consideration of all pertinent agencies that own, operate, and maintain infrastructure to ensure system reliability and compliance. The key to permissive integration is the identification of key interested stakeholders and their early involvement in consultation and planning of these projects.

Key findings of the study and recommendations include:

- Only 28-percent of the Los Angeles Basin is available for groundwater augmentation through stormwater infiltration. This area is densely populated, further limiting future centralized and decentralized project development.
- Within the county, there are approximately 21,000 miles of sewers and 3,300 miles of storm drains owned by LACFCD with thousands of miles of additional city-owned sewer and drainage systems.
- The cumulative municipal wastewater treatment capacity in Los Angeles County is 1.4M AFY. A
 comparison of pre- versus post-drought flows show a 103,000 AFY reduction in influent sewer flows,
 from 958,000 AFY in 2010 to 855,000 AFY in 2017. This analysis did not account for population
 growth from 2010 to 2017.
- Additional sewer capacity cause by the drought presents an opportunity to maximize the use of this
 infrastructure for the co-equal benefits of water quality and water supply, through the introduction

BI0423181614LAC Page 46 of 70

- of stormwater under controlled conditions, likely involving storage of collected stormwater prior to diversion to the collection system.
- Of the current wastewater flows treated, approximately 231,000 AFY are reused for both potable and non-potable uses. Within the next 10 years, planned reuse project will more than double the current reuse flow rate.
- There are 47 LFDs within Los Angeles County that handle dry-weather flows only. LFDs are designed
 to capture dry-weather flow and provide water quality benefits but are typically not considered a
 source of water supply. Construction of more LFDs and/or expansion of existing LFDs to accept some
 of the wet-weather flows should be tested by developing pilot studies.
- Controlled diversion of urban runoff/stormwater from the storm drain system can help to address MS4 requirements while generating the potential for more recycled water to help meet future demands.
- Potential diversions should be analyzed on a case-by-case basis to ensure permissive integration of the storm drain and wastewater systems.
- Projects will need to be evaluated on a case-by-case basis to determine their impacts on both the local conveyance system and the treatment process.
- Projects should be prioritized in coordination with planned investments by water and wastewater
 agencies to avoid duplication, and leverage all available funding sources. To maximize water quality
 benefit, priority should also be given to handling dry-weather flows.
- Maximizing the use of existing infrastructure may inherently provide a more cost-effective solution.

References

Burbank Water and Power. June 2016. *Urban Water Management Plan.* Retrieved from https://www.burbankwaterandpower.com/images/water/downloads/2015_UWMP_Final_06-24-2016.pdf

California Water Urban Agencies (CUWA). October 2017. *Adapting to Change: Utility Systems and Declining Flows*.

City of Los Angeles Bureau of Sanitation (LASAN). Accessed April 2018. Retrieved from

https://www.lacitysan.org/san/faces/wcnav_externalId/s-lsh-wwd-

cw;jsessionid=f1D1IjZBNt4Zo 032zxDkQUdROPpZMwR8-

vRKUtwvBPjGDscTaE5!1952532261!844563850? adf.ctrl-

<u>state=chdzxrnw 1& afrLoop=1453196345471492& afrWindowMode=0& afrWindowId=13bpras9a 27</u> #!%40%40%3F afrWindowId%3D13bpras9a 27%26 afrLoop%3D1453196345471492%26 afrWindowMode%3D0%26 adf.ctrl-state%3Dchdzxrnw 5

City of Los Angeles Bureau of Sanitation (LASAN). February 2018. *Draft One Water LA Executive Summary*.

City of Los Angeles Bureau of Sanitation (LASAN). July 2004. *Integrated Resources Plan*. Retrieved from https://www.lacitysan.org/cs/groups/public/documents/document/y250/mdew/~edisp/cnt010378.pdf

City of Los Angeles. 2015. *Sustainable City Plan*. Retrieved from http://plan.lamayor.org/wp-content/uploads/2017/03/the-plan.pdf

Greater Los Angeles County Region Integrated Regional Water Management (GLAC). February 2014. Greater Los Angeles County Integrated Regional Water Management Plan. Retrieved from https://dpw.lacounty.gov/wmd/irwmp/

Las Virgenes Municipal Water District (LVMWD). Accessed April 2018.

https://www.lvmwd.com/education/publications/the-current-flow/the-e-current-flow

Las Virgenes Municipal Water District (LVMWD). January 2017. *Draft Policy Principles for Dry-Weather Urban Runoff Diversions*. Retrieved from http://www.triunfosanitation.com/images/pdf-files/tsd-2017-meetings/jpa-01-17-meeting/01-03-17-JPA_Packet.pdf

Los Angeles County Department of Public Works (LACDPW). Accessed April 2018. Retrieved from http://dpw.lacounty.gov/SMD/SMD/Page 08.cfm

Los Angeles County Department of Public Works (LACDPW). January 2014. *Report on Treatment of Urban Runoff and Governance of Los Angeles County Sanitation Districts*. Retrieved from http://file.lacounty.gov/SDSInter/bos/bc/210758 CleanWaterCleanBeaches3-17-14.pdf

Los Angeles County Department of Public Works (LACDPW). September 2017. *Building Water Resilience in Los Angeles County: A Report*. Retrieved from

https://dpw.lacounty.gov/wrp/docs/WRP_TechDraft_Final_171103.pdf

Los Angeles County Flood Control District (LACFCD). May 2006. Final Report for the North Westchester Storm Drain Low-Flow Diversion Project. Retrieved from

https://www.waterboards.ca.gov/water_issues/programs/beaches/cbi_projects/docs/summaries/110_l_a_co_dockweiler.pdf

Los Angeles Department of Water and Power (LADWP). August 2015. *Stormwater Capture Master Plan*. Retrieved from https://www.ladwp.com/ladwp/faces/wcnav_externalId/a-w-stormwatercapturemp;jsessionid=mG7Hhp9QBf6FyT1S2hgLv4WJMp32Ftx8kChHqlVpfdsFmJBCvQn6!143

BIO423181614LAC

027067? adf.ctrl-

state=9rp1rq7uf_4& a))& afrLoop=141928445382550& afrWindowMode=0& afrWindowId=null#%40 %3F_afrWindowId%3Dnull%26_afrLoop%3D141928445382550%26_a%2529%2529%3D%26_afrWindowMode%3D0%26_adf.ctrl-state%3D13bpras9a_4

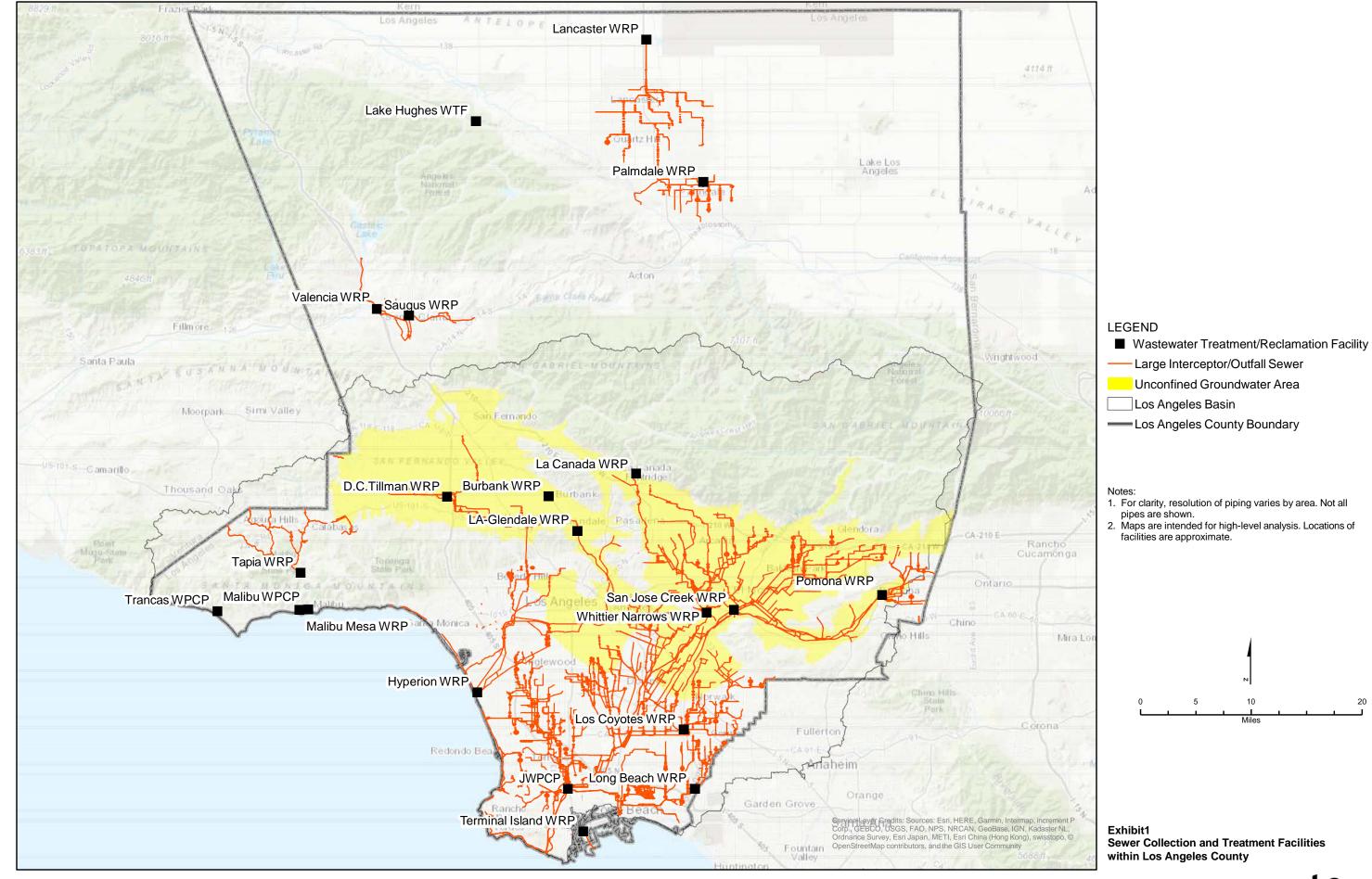
Los Angeles Department of Water and Power (LADWP). October 2012. *Recycled Water Master Plan*. Retrieved from https://www.ladwp.com/ladwp/faces/ladwp/aboutus/a-water/a-w-recycledwater/au-w-rwmp? adf.ctrl-state=13bpras9a 30& afrLoop=142027439816437

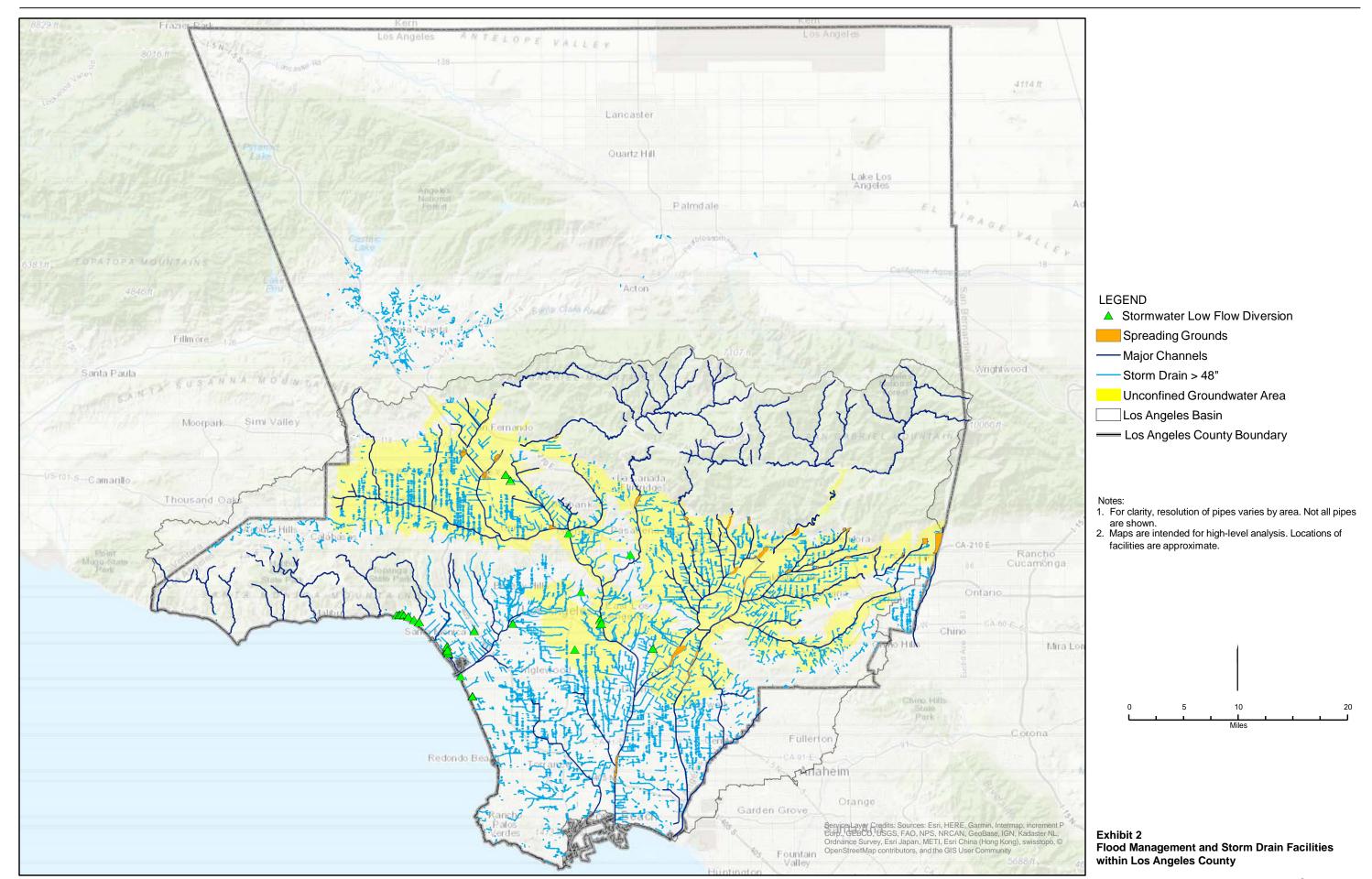
Metropolitan Water District of Southern California (MWD). January 2018. *Stormwater Capture and Flows to the Ocean*. Retrieved from

http://edmsidm.mwdh2o.com/idmweb/cache/MWD%20EDMS/003738158-1.pdf

Metropolitan Water District of Southern California (MWD). January 2016. *Integrated Water Resources Plan 2015 Update*. Retrieved from

http://www.mwdh2o.com/PDF About Your Water/2015%20IRP%20Update%20Report%20(web).pdf


Sanitation Districts of Los Angeles County (LACSD). November 2014. *Dry Weather Urban Runoff Diversion Policy*. Retrieved from http://www.lacsd.org/civicax/filebank/blobdload.aspx?blobid=2560


Sanitation Districts of Los Angeles County (LACSD). *Wastewater Collection Systems*. Accessed April 2018. Retrievedfrom http://www.lacsd.org/wastewater/wwfacilities/wcs.asp

United States Bureau of Reclamation (USBR). November 2016. *Los Angeles Basin Study*. Retrieved from https://www.usbr.gov/watersmart/bsp/docs/fy2017/LABasinStudySummaryReport.pdf

Water Replenishment District of Southern California (WRD). August 2012. *Stormwater Recharge Feasibility and Pilot Project Development Study*. Prepared by Council for Watershed Health Geosyntec Consultants Santa Monica Bay Restoration Commission.

Appendix A Exhibits

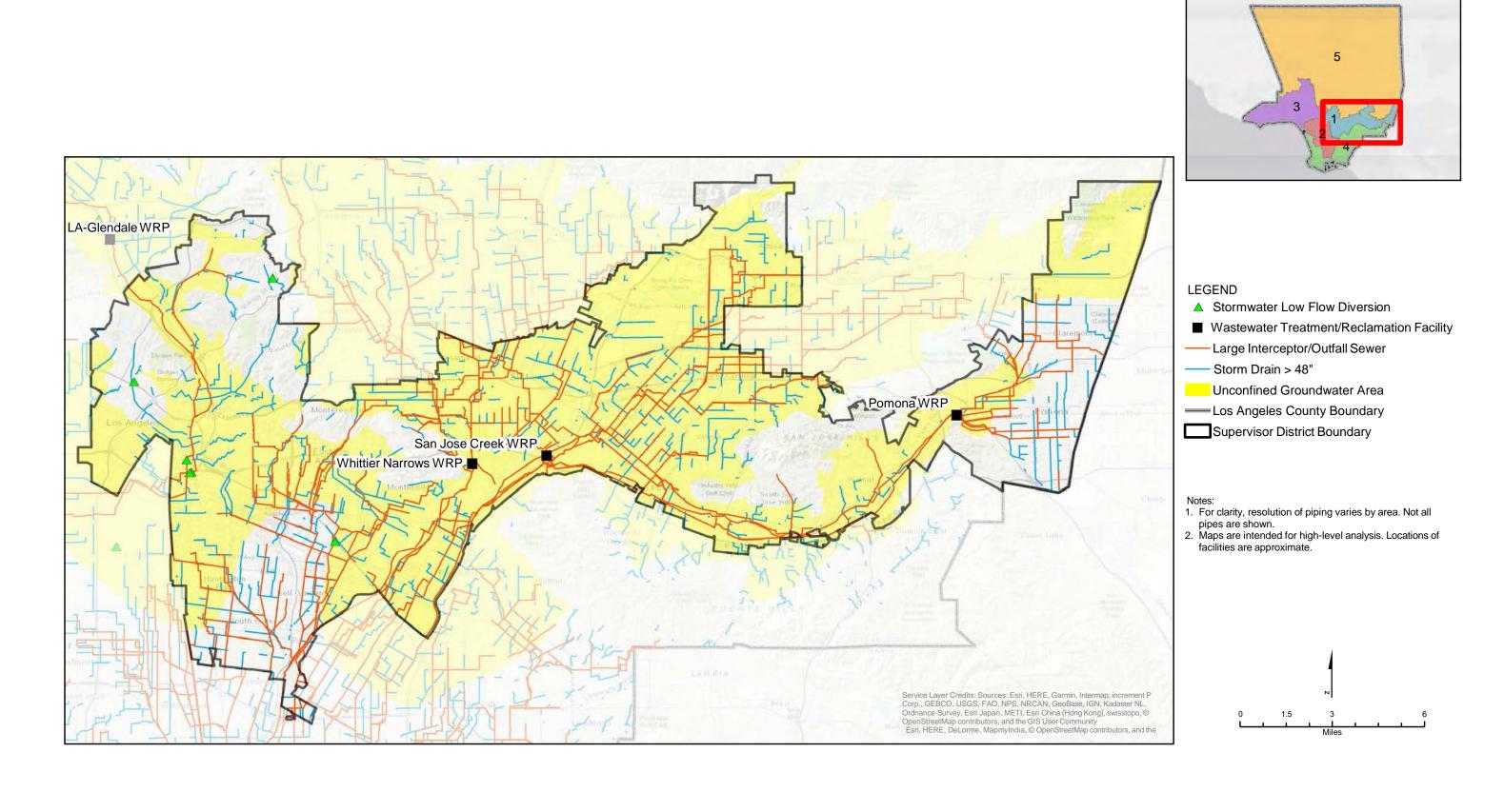
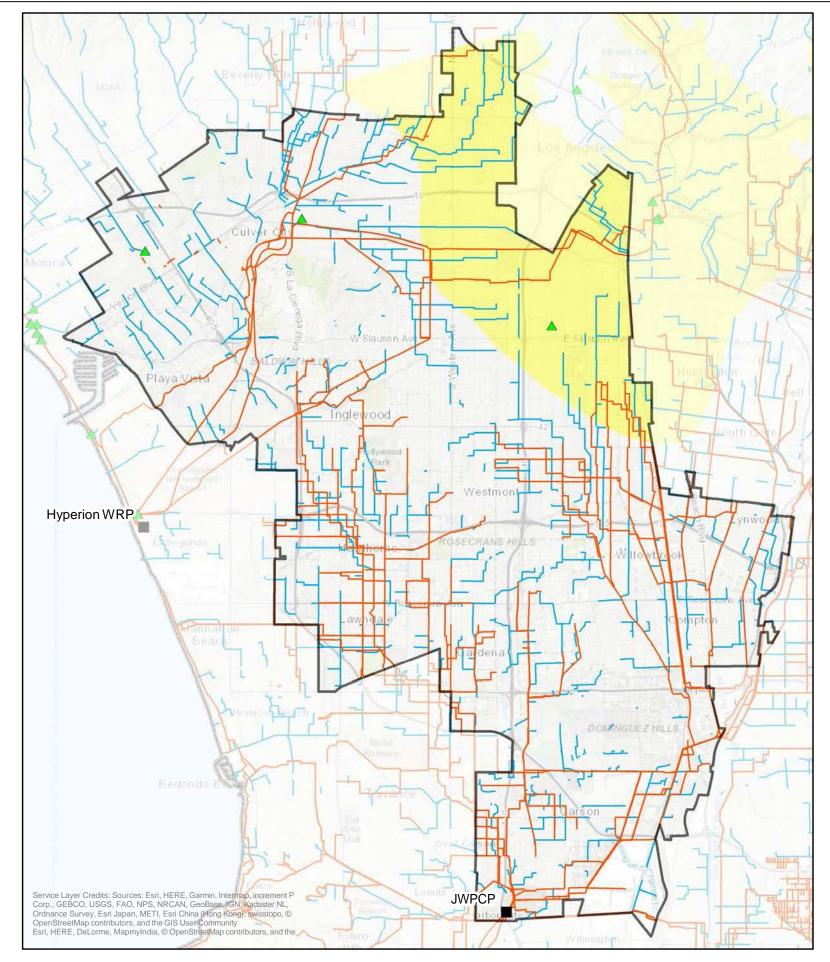



Exhibit 4
Los Angeles County Board of Supervisors
District 1 - Hilda L. Solis
Storm Drain and Sewer Facilities

VICINITY MAP AND SUPERVISOR DISTRICTS

VICINITY MAP AND SUPERVISOR DISTRICTS

LEGEND

- ▲ Stormwater Low Flow Diversion
- Wastewater Treatment/Reclamation Facility
- Large Interceptor/Outfall Sewer
- Storm Drain > 48"
- Unconfined Groundwater Area
- Los Angeles County Boundary
- Supervisor District Boundary

- Notes:
 For clarity, resolution of piping varies by area. Not all pipes are shown.
 Maps are intended for high-level analysis. Locations of facilities are approximate.

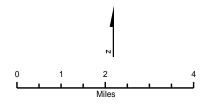
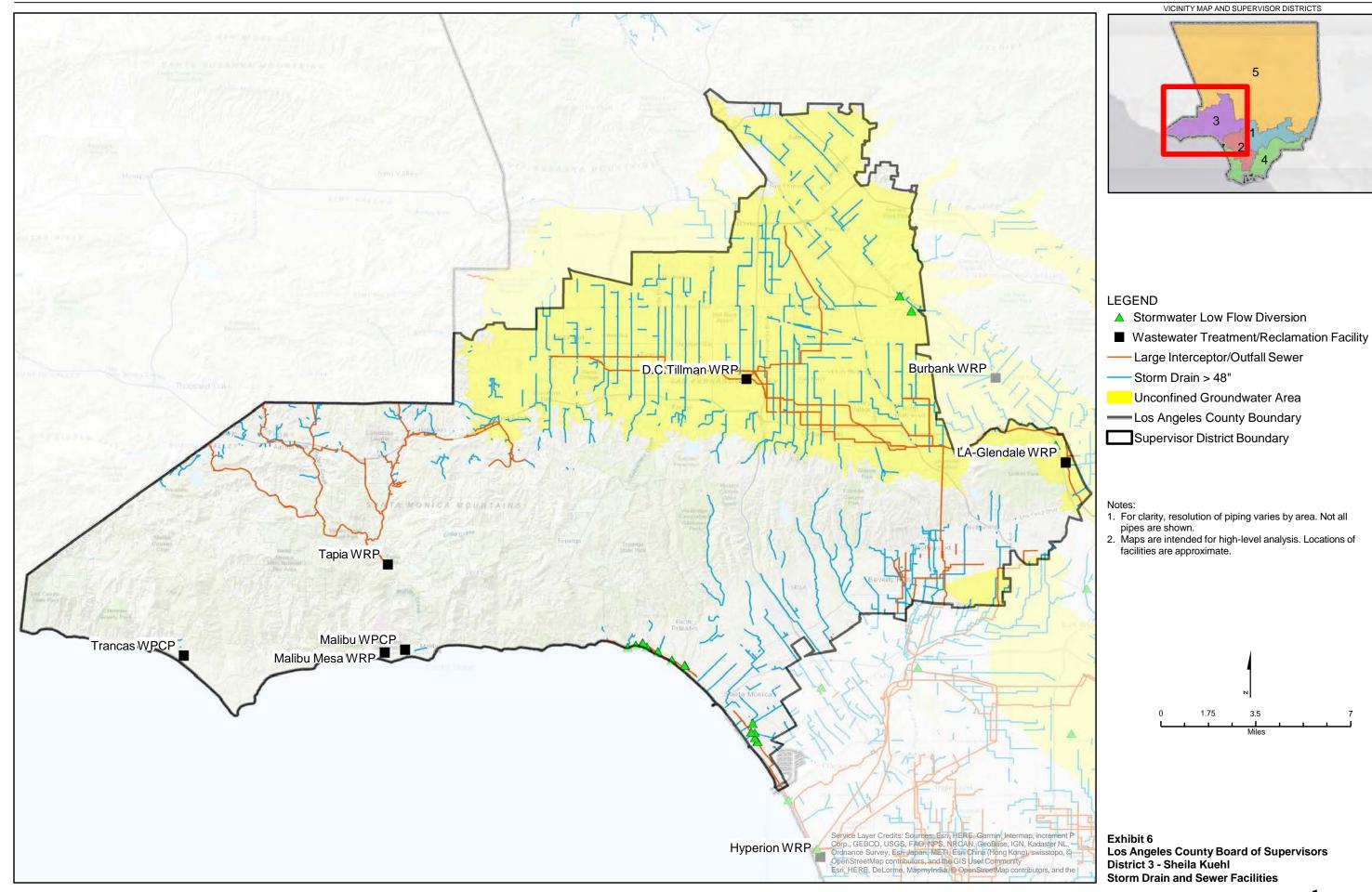
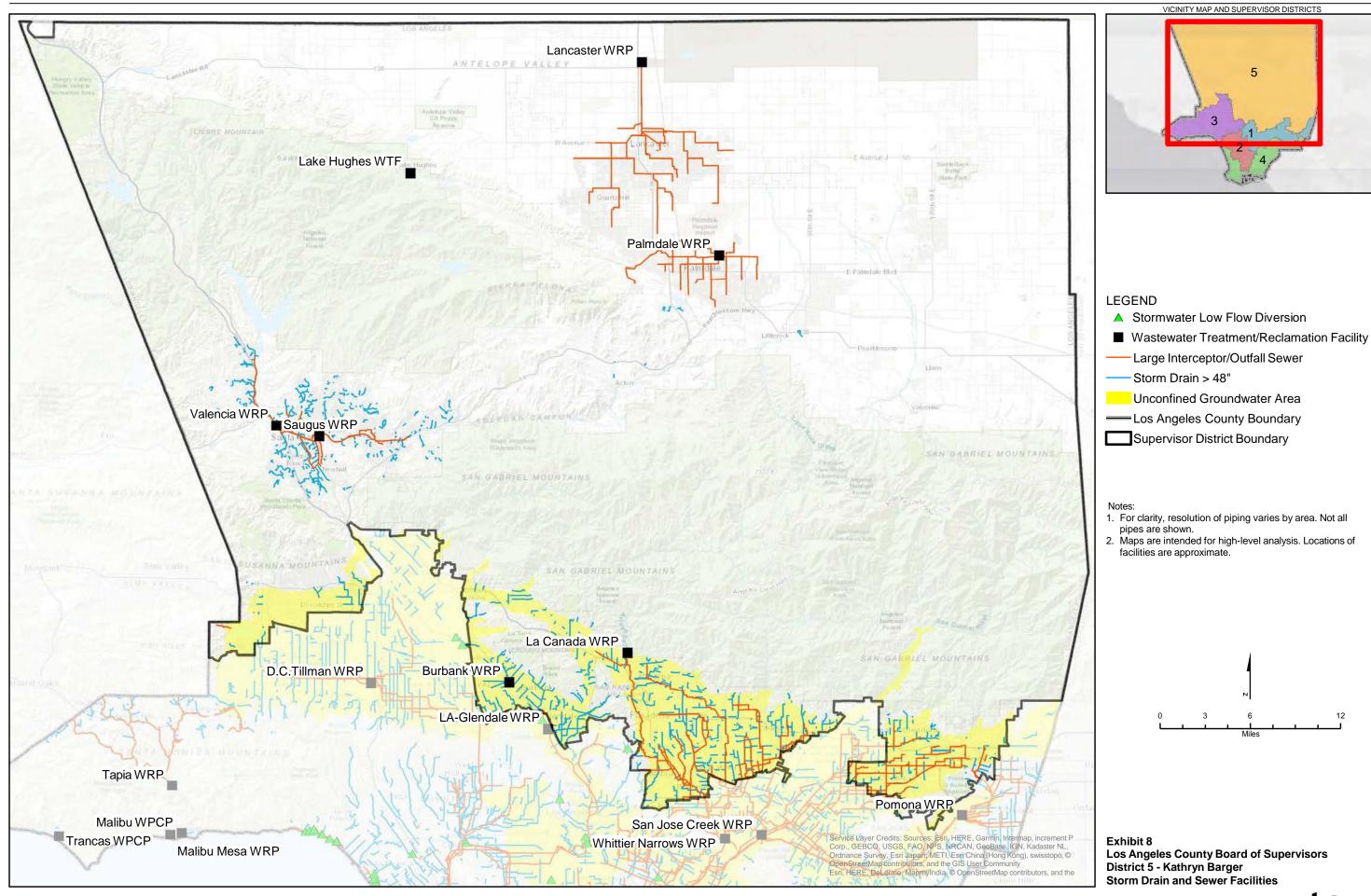



Exhibit 5 Los Angeles County Board of Supervisors District 2 - Mark Ridley-Thomas **Storm Drain and Sewer Facilities**



Service Layer Credits: Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), swisstopo, © OpenStreetMap contributors, and the GIS User Community Esri, HERE, DeLorme, MapmyIndia, © OpenStreetMap contributors, and the

Exhibit 7
Los Angeles County Board of Supervisors
District 4 - Janice Hahn
Storm Drain and Sewer Facilities

VICINITY MAP AND SUPERVISOR DISTRICTS

REPORT

DATE: October 17, 2018

TO: Water Committee/TAC

FROM: Marisa Creter, Executive Director

RE: PROPOSITION 3 OVERVIEW

RECCOMENDED ACTION

For information only.

BACKGROUND

Proposition 3, also known as the California Water Infrastructure and Watershed Conservation Bond Initiative, is on the November 6 ballot as an initiated state statute. This proposition allows the state to sell \$8.9 billion in new general obligation bonds for various water and environmental projects. These funds fall into six broad categories, as summarized in Table 1.

Category	Primary Activities	Amount
Watershed lands	Protect, restore and improve the health of watershed lasn	\$2.5 Billion
	in specified areas of the ate to increase the amount and	
	quality of water.	
Water Supply	Improve and increase: drinking water, wastewater	\$2.1 Billion
	treatment, water recycling, collection and clean-up of	
	rainwater and water conservation	
Fish and wildlife	Improve habitats for fish and wildlife, including by	\$1.4 Billion
habitat	restoring streams and wetlands to more natural	
	conditions.	
Water facility	Make connections and repairs to existing dams, canals,	\$1.2 Billion
upgrades	and reservoirs	
Groundwater	Clean up, recharge, and manage groundwater.	\$1.1 Billion
Flood protection	Reduce flood risk, including by expanding floodplains	\$500 Million
	and repairing reservoirs	
Total		\$8.9 Billion

Table 1. Uses of Proposition 3 Bond Funds

Within the broad categories, the proposition includes around 100 subcategories for how certain amounts must be spent, including for particular regions of the state or on specific projects. For some funding subcategories, grant recipients would have to provide a 1:1 match for grant funds received. Funding is distributed mostly through grants to local governments, Indian tribes, non-profit organizations, and private water companies.

FISCAL AND LOCAL IMPACT

Proposition 3 would allow the state to borrow \$8.9 billion by selling additional general obligation bonds to investors. Investors would be repaid with interest using the state's General Fund tax

revenues. The Legislative Analyst's Office (LAO) estimates that the cost to state taxpayers to repay this bond would total \$17.3 billion to pay off both principal (\$8.9 billion) and interest (\$8.4 billion). This would result in average costs of about \$430 million annually over the next 40 years. This amount is about one-third of 1 percent of the state's current General Fund budget.

Additionally, the LAO estimates that this proposition would result in savings to local governments to complete the projects funded by this bond. These savings could average a couple hundred million dollars annually over the next few decades. The exact amount would depend on which specific projects local governments choose and their share of the total project costs.

SUPPORT AND OPPOSITION

Those in support of Proposition 3 believe it is a balanced water bond measure that will result in improved water supplies for every part of the state and provide needed investment in California's sustainable water future. The following is a sample list of those who support the proposition

- · League of California Cities
- · California State Association of Counties
- Biz Fed Los Angeles County
- Los Angeles Chamber of Commerce
- Association of California Water Agencies
- California Municipal Utilities Association
- California Water Association
- California Water Alliance
- Metropolitan Water District of Southern California
- · San Gabriel Valley Municipal Water District
- Upper San Gabriel Valley Municipal Water District
- San Gabriel Mountains Regional Conservancy

Those who oppose Proposition 3 argue that the bond lacks legislative oversight as the funds are continuously appropriated, rather than being legislatively appropriated and disproportionally benefits water supply projects for industrial agricultural operations. The following is a list of organizations in opposition of the proposition:

- · Sierra Club, California
- Friends of the River
- · League of Women Voters of California
- Save The American River Association
- Southern California Watershed Alliance

Prepared by:

Katie Ward

Senior Management Analyst

Approved by: 1 Parisa Creter

Marisa Creter Executive Director

ATTACHMENT

Attachment A – Proposition 3: Official Title and Summary

PROPOSITION

3

AUTHORIZES BONDS TO FUND PROJECTS FOR WATER SUPPLY AND QUALITY, WATERSHED, FISH, WILDLIFE, WATER CONVEYANCE, AND GROUNDWATER SUSTAINABILITY AND STORAGE. INITIATIVE STATUTE.

OFFICIAL TITLE AND SUMMARY

PREPARED BY THE ATTORNEY GENERAL

The text of this measure can be found on the Secretary of State's website at http://voterguide.sos.ca.gov.

- Authorizes \$8.877 billion in state general obligation bonds for various infrastructure projects: \$3.03 billion for safe drinking water and water quality, \$2.895 billion for watershed and fisheries improvements, \$940 million for habitat protection, \$855 million for improved water conveyance, \$685 million for groundwater sustainability/ storage, and \$472 million for surface water storage/dam repairs.
- Appropriates money from General Fund to pay off bonds.
- Requires certain projects to provide matching funds from non-state sources; gives priority to disadvantaged communities.

SUMMARY OF LEGISLATIVE ANALYST'S ESTIMATE OF NET STATE AND LOCAL GOVERNMENT FISCAL IMPACT:

- Increased state costs to repay bonds averaging about \$430 million per year over the next 40 years.
- Savings to local governments, likely averaging a couple hundred million dollars annually over the next few decades.

State Bond Cost Estimates

Authorized new borrowing
Average annual cost to pay off bonds
Likely repayment period
Source of repayment

\$8.9 billion \$430 million 40 years General Fund to

General Fund tax revenues

ANALYSIS BY THE LEGISLATIVE ANALYST

BACKGROUND

Californians Get Water From Several Sources. Most of the water used for drinking and farming in California comes from rain and melted snow. Rain and snow flow into streams and rivers, many of which start in the mountains. The areas where these streams and rivers begin are referred to as "watersheds." California has built dams, reservoirs, and canals to store water and deliver it around the state. Water is also pumped from underground (referred to as "groundwater"), especially during dry years when not as much rain and snow falls. A small share of the state's water comes from other sources. such as cleaning and reusing the wastewater that households and businesses send into sewers (referred to as "water recycling").

Most Spending on Water Is by Local Governments. Local government agencies—usually water districts, cities, and counties—fund most of the projects that provide clean water for people to drink, supply water for farming, and protect

communities from floods. These agencies spend about \$25 billion each year on these types of water-related activities. Residents pay for the majority of this spending when they pay their water and sewer bills.

State Also Spends Money on Water, as Well as **Environmental Projects.** The state gives grants and loans to local government agencies to help pay part of the costs of some of their water projects. The state also spends money on projects to improve the natural environment, including protecting habitats that are home to fish, birds, and other wildlife. In many cases, the state—rather than local governments—provides most of the funding for these environmental projects. Sometimes state departments carry out environmental projects themselves, and sometimes they give grants to local governments, nonprofit organizations, and other organizations for these projects. In recent years, the state has spent about \$4 billion per year to support water and environmental projects.

ANALYSIS BY THE LEGISLATIVE ANALYST

CONTINUED

Voter-Approved Bonds Are a Common Source of State Funding for These Projects. The state mainly uses general obligation (GO) bonds and the state's General Fund to pay for water and environmental projects. GO bonds are a way to borrow money. Voters give the state permission to sell bonds to investors, and the state uses that money as "up-front" funding for projects. The state then repays the investors over time, with interest, from the General Fund—the state's main operating account, which also pays for education, prisons, health care, and other services. (For more information on the state's use of bonds, see "Overview of State Bond Debt" later in this guide.)

Since 2000, voters have approved about \$31 billion in GO bonds in statewide elections to pay for different types of water and environmental projects. Of this amount, roughly one-third was still available to pay for new projects as of June 2018. This includes \$4 billion that was approved by voters through Proposition 68 in June 2018.

- Watershed Lands (\$2.5 Billion). This category funds projects to improve the conditions of watershed lands, which include forests, meadows, wetlands, and areas near rivers. Funded projects must protect or improve the supply and quality of the water that comes from these lands. Many of these projects would also have environmental benefits, such as improving habitat for fish and wildlife or reducing the risk of forest fires. This funding category includes about 50 subcategories with special requirements. including that certain amounts be spent in specific areas of the state. For example, the proposition provides \$250 million for the forests in the Sierra Nevada Mountains and \$200 million for the Salton Sea in Southern California.
- Water Supply (\$2.1 Billion). This funding is for projects that will increase the amount of water available for people to use. This includes money for collecting and cleaning up rainwater (\$550 million), cleaning up

PROPOSAL

\$8.9 Billion Bond for Water and Environmental Projects. This proposition allows the state to sell \$8.9 billion in new GO bonds for various water and environmental projects. These funds fall into six broad categories, as summarized in Figure 1.

Within these broad categories, the proposition includes around 100 subcategories for how certain amounts must be spent, including for particular regions of the state or on specific projects. The proposition's broad spending categories include the following:

Category	Primary Activities	Amount
Watershed lands	Protect, restore, and improve the health of watershed lands in specified areas of the state to increase the amount and quality of water.	\$2,495
Water supply	Improve and increase: drinking water and wastewater treatment, water recycling, collection and clean-up of rainwater, and water conservation.	2,130
Fish and wildlife habitat	Improve habitats for fish and wildlife, including by restoring streams and wetlands to more natural conditions.	1,440
Water facility upgrades	Make connections and repairs to existing dams, canals, and reservoirs.	1,227
Groundwater	Clean up, recharge, and manage groundwater.	1,085
Flood protection	Reduce flood risk, including by expanding floodplains and repairing reservoirs.	500
Total		\$8,877

CONTINUED

ANALYSIS BY THE LEGISLATIVE ANALYST

drinking water (\$500 million), and recycling wastewater (\$400 million). The proposition also provides funding for water conservation activities that decrease how much water people use (\$300 million). This could include paying some of the costs for people to install low-flow toilets or replace their lawns with plants that use less water.

- Fish and Wildlife Habitat (\$1.4 Billion). This category funds projects to improve fish and wildlife habitat. The types of projects could include increasing the amount of water that flows to a wetland or river, as well as buying undeveloped land to keep it in a natural state. The proposition targets some of the funding for projects to help certain species, including native fish in the Central Valley (\$400 million), salmon and steelhead trout (\$300 million), and migratory birds (\$280 million).
- Water Facility Upgrades (\$1.2 Billion). This funding is for four specific projects to improve the availability of water in certain areas of the state. These projects include: (1) repairing the federally owned Madera and Friant-Kern canals in the Central Valley (\$750 million), (2) building canals and other types of projects that connect local reservoirs and communities in the San Francisco Bay region (\$250 million), (3) repairing the state-owned Oroville Dam in Butte County (\$200 million), and (4) planning changes for the North Bay Aqueduct that serves Solano and Napa Counties (\$5 million).
- Groundwater (\$1.1 Billion). This category funds projects related to groundwater storage to make sure groundwater will be available in future years. This includes activities to clean up groundwater by removing salts to make it more usable (\$400 million). Funding will also be used for projects that help water to soak back into the ground so that it can be used in the future (known as "groundwater recharge").

• Flood Protection (\$500 Million). This funding is for projects that reduce the risk from floods. These projects could include expanding floodplains (which provide areas where floodwaters can spread without causing much harm) and repairing reservoirs. Some of these projects would provide other benefits, such as improving fish and wildlife habitat, increasing water supplies, and improving recreation opportunities. Some of this funding is for projects in specific areas of the state, including the Central Valley (\$200 million) and the San Francisco Bay Area (\$200 million).

Distributes Most Funding Through Grants. The proposition provides funding to more than a dozen different state departments. The proposition continuously appropriates the bond funds to these departments, which is different from most water and environmental bonds. This means that the Legislature would not spend the funds in the annual state budget. Instead, departments would automatically receive funding when they are ready to spend it. Departments would spend some of the funds to carry out projects themselves. However, almost all of the funds would be given as grants to local government agencies, Indian tribes, nonprofit organizations, and private water companies for specific projects. For some funding subcategories—particularly those related to increasing or protecting water supply—grant recipients would have to provide at least \$1 in local funds for each \$1 of grant funding they receive.

Provides Funding for "Disadvantaged Communities."

The proposition has several requirements to help disadvantaged communities (those with lower average incomes). For a few spending subcategories, the proposition requires that funding be spent on projects that benefit these communities. Also, in many cases disadvantaged communities that receive grants would not have to pay the local share of costs discussed above.

ANALYSIS BY THE LEGISLATIVE ANALYST

CONTINUED

Provides Greenhouse Gas (GHG) Funds for Water **Projects.** Separate from the \$8.9 billion bond, this proposition also changes how the state must spend some existing funding related to GHGs. The state has passed laws to reduce global warming by limiting the amount of GHGs that are released in California. These efforts include the "cap-and-trade" program, which requires some companies and government agencies to buy permits from the state to release GHGs. The program causes some water agencies to have higher electricity costs to operate parts of their water delivery systems, such as pumps and water treatment plants. This proposition requires that a portion of the funding the state receives from the sale of permits be provided to four water agencies—the state Department of Water Resources, the Metropolitan Water District of Southern California, the Contra Costa Water District, and the San Luis and Delta Mendota Water Authority. The amount of funding would be equal to each agency's additional electricity costs associated with state programs to reduce GHGs. We estimate these costs could total tens of millions of dollars annually. (In the most recent year, the state has received \$3 billion from the sale of permits.) The agencies would be required to spend the funds they receive on such activities as water conservation programs. As such, these funds would no longer be available for the state to spend on other activities.

FISCAL EFFECTS

State Bond Costs. This proposition would allow the state to borrow \$8.9 billion by selling additional GO bonds to investors. These investors would be repaid with interest using the state's General Fund tax revenues. The cost of these bonds would depend on various factors—such as the interest rates in effect at the time they are sold, the timing of bond sales, and the time period over which they are repaid. We estimate that the cost to state taxpayers to repay this bond would total \$17.3 billion to pay off both principal

(\$8.9 billion) and interest (\$8.4 billion). This would result in average costs of **about \$430 million annually over the next 40 years.** This amount is about one-third of 1 percent of the state's current General Fund budget.

Local Costs and Savings to Complete Projects.

Much of the bond funding would be used for local government projects. Providing state funds for local projects would affect how much of their own funds these local governments spend on these projects. In many cases, state bonds would reduce local spending. For example, this would occur in cases where the state bond funds replaced monies that local governments would have spent on projects anyway.

In some cases, however, state funds could increase total spending on projects by local governments. For example, some local governments might choose to build additional or substantially larger projects than they would if state funds were not available. For some of these projects—such as when the bond requires a local cost share—local governments would bear some of the additional costs.

On balance, we estimate that this proposition would result in savings to local governments to complete the projects funded by this bond. These savings could average a couple hundred million dollars annually over the next few decades. The exact amount would depend on which specific projects local governments choose and their share of the total project costs.

Visit http://www.sos.ca.gov/campaign-lobbying/cal-accessresources/measure-contributions/2018-ballot-measurecontribution-totals/ for a list of committees primarily formed to support or oppose this measure. Visit http://www.fppc. ca.gov/transparency/top-contributors/nov-18-gen.html to access the committee's top 10 contributors.

If you desire a copy of the full text of the state measure, please call the Secretary of State at (800) 345-VOTE (8683) or you can email vigfeedback@sos.ca.gov and a copy will be mailed at no cost to you.

REPORT

DATE: October 17, 2018

TO: Water Committee

Water TAC

FROM: Marisa Creter, Executive Director

RE: STATE AND FEDERAL LEGISLATION UPDATES/SUMMARY

RECOMMENDED ACTION

For information only.

BACKGROUND

Below is a summary and updates on key legislative items currently being tracked by the Water Committee and Water TAC.

SB 1133 (PORTANTINO) - WATER QUALITY CONTROL PLANS: FUNDING

This bill would authorize the State Water Resources Control Board, on behalf of itself or a regional board, to accept donations of moneys from a permittee for the purpose of updating a water quality control plan. The SGVCOG took a position of support for SB 1133 and was signed by the Governor.

<u>SB 1422 (PORTANTINO) - CALIFORNIA SAFE DRINKING WATER ACT:</u> MICROPLASTICS

This bill would require the state board, on or before July 1, 2020, to adopt a definition of microplastics in drinking water, and on or before July 1, 2021, to adopt a standard methodology to be used in the testing of drinking water for microplastics and requirements for 4 years of testing and reporting of microplastics in drinking water, including public disclosure of those results.

The SGVCOG did not take a position on SB 1422 and was signed by the Governor.

<u>SB 998 (DODD) - DISCONTINUATION OF RESIDENTIAL WATER SERVICE: URBAN AND COMMUNITY WATER SYSTEMS</u>

This bill would require an urban and community water system, defined as a public water system that supplies water to more than 200 service connections, to have a written policy on discontinuation of water service to certain types of residences for nonpayment available in prescribed languages. The bill would prohibit an urban and community water system from discontinuing residential service for nonpayment until a payment by a customer has been delinquent for at least 60 days. The bill would require an urban and community water system to contact the customer named on the account and provide the customer with the urban and community water system's policy on discontinuation of residential service for nonpayment no less than 7 business days before discontinuation of residential service, as prescribed. This bill would

REPORT

prohibit residential service from being discontinued under specified circumstances.

The SGVCOG did not take a position on SB 998 and was signed by the Governor.

<u>AB 2538 (RUBIO) - MUNICIPAL SEPARATE STORM SEWER SYSTEMS: FINANCIAL CAPABILITY ANALYSIS</u>

This bill would require the state board, by July 1, 2019, to establish financial capability assessment guidelines for municipal separate storm sewer system permittees that are adequate and consistent when considering the costs to local jurisdictions. The SGVCOG took a position of support for AB 2538.

AB 2538 was vetoed by the Governor based on the argument that the State Water Board is currently working on guidelines to assist local agencies in estimating and tracking cost of compliance for stormwater permits.

FEDERAL UPDATE – COURTESY OF CONGRESSWOMAN NAPOLITANO'S OFFICE

The Water Resources Development Act (WRDA) was passed in the Senate October 10 and will be signed by the President soon. Implementation of the new WRDA will begin, with a focus on ensuring agencies incorporate the water supply and stormwater provisions that were included. In terms of stormwater, one of the primary provision is a \$450 million grant program that still needs to be funded through the appropriations process. Congresswoman Napolitano is taking the lead on seeking the funding for this grant program through appropriations as the funding cycle is started in January.

Colorado River Drought Contingency Plan: For the past 2 years, the 7 Colorado River Basin states have been working on reaching a drought contingency plan for the Colorado River. The Colorado River has been in a major drought for the past 18 years. The river could reach the point this year where levels are so low in Lake Mead and Lake Powell that states start losing their water and power supplies from the river. In the past couple weeks, the 7 Basin states including California have agreed on both intrastate agreements and an interstate agreement to share shortages in supply if the drought continues and lake levels go lower. Congress will have to implement this agreement and Congresswoman Napolitano will take a leading role in authoring the legislation to implement the agreement. The goal is to have a bill passed by the end of this year, but may be pushed into early next year.

Prepared by:

Katie Ward

Senior Management Analyst

Approved by:

Marisa Creter
Executive Director

